Power delivery and locomotion of untethered microactuators

The ability for a device to locomote freely on a surface requires the ability to deliver power in a way that does not restrain the device's motion. This paper presents a MEMS actuator that operates free of any physically restraining tethers. We show how a capacitive coupling can be used to deliver power to untethered MEMS devices, independently of the position and orientation of those devices. Then, we provide a simple mechanical release process for detaching these MEMS devices from the fabrication substrate once chemical processing is complete. To produce these untethered microactuators in a batch-compatible manner while leveraging existing MEMS infrastructure, we have devised a novel postprocessing sequence for a standard MEMS multiproject wafer process. Through the use of this sequence, we show how to add, post hoc , a layer of dielectric between two previously deposited polysilicon films. We have demonstrated the effectiveness of these techniques through the successful fabrication and operation of untethered scratch drive actuators. Locomotion of these actuators is controlled by frequency modulation, and the devices achieve maximum speeds of over 1.5 mm/s.

[1]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[2]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[3]  Göran Stemme,et al.  A WALKING SILICON MICRO-ROBOT , 1999 .

[4]  Akihiro Torii,et al.  An Analysis of the Elastic Deformation of an Electrostatic Microactuator , 1998 .

[5]  Bruce Randall Donald,et al.  Vector fields for task-level distributed manipulation: experiments with organic micro actuator arrays , 1997, Proceedings of International Conference on Robotics and Automation.

[6]  Terunobu Akiyama,et al.  Controlled stepwise motion in polysilicon microstructures , 1993 .

[7]  I. Shimoyama,et al.  Insect-model based microrobot with elastic hinges , 1994 .

[8]  Luigi Fortuna,et al.  Technologies and architectures for autonomous "MEMS" microrobots , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[9]  Bruce Randall Donald,et al.  Fully programmable MEMS ciliary actuator arrays for micromanipulation tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Bruce Randall Donald,et al.  Sensorless manipulation using massively parallel microfabricated actuator arrays , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[11]  Isao Shimoyama,et al.  Microrobot actuated by a vibration energy field , 1994 .

[12]  J. Lang,et al.  An electrostatic induction micromotor supported on gas-lubricated bearings , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[13]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[14]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[15]  Hiroyuki Fujita,et al.  CAD modeling of scratch drive actuation , 2000, Other Conferences.

[16]  Hiroyuki Fujita,et al.  A quantitative analysis of scratch drive actuation for integrated X/Y motion system , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[17]  Robert Fitch,et al.  Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting , 2002 .

[18]  Paolo Dario,et al.  Microactuators for microrobots: a critical survey , 1992 .

[19]  Shigeoki Hirai,et al.  Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.

[21]  Hiroyuki Fujita,et al.  Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS , 1997 .

[22]  N. C. MacDonald,et al.  Single-crystal silicon actuator arrays for micro manipulation tasks , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[23]  Gregory T. A. Kovacs,et al.  OMNIDIRECTIONAL WALKING MICROROBOT REALIZED BY THERMAL MICROACTUATOR ARRAYS , 2001 .

[24]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[25]  George M. Whitesides,et al.  Meso-scale self-assembly , 2001 .

[26]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[27]  Deepak Uttamchandani,et al.  Detailed study of scratch drive actuator characteristics using high-speed imaging , 2001, SPIE MOEMS-MEMS.

[28]  B. Donald,et al.  Information Invariants for Distributed Manipulation 1 , 1995 .

[29]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[30]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[31]  W Steckelmacher VLSI Fabrication principles: Silicon and gallium arsenide , 1995 .

[32]  Luigi Fortuna,et al.  Development of autonomous, mobile micro-electro-mechanical devices , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[33]  David A. Koester,et al.  MEMS infrastructure: the multiuser MEMS processes (MUMPs) , 1995, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[34]  RESTRICTIVE MARKINGS Low Temperature Growth of Silicon Dioxide Films : A Study of Chemical Bonding By Ellipsometry and Infrared Spectroscopy , .

[35]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[36]  D. Collard,et al.  A large stepwise motion electrostatic actuator for a wireless microrobot , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[37]  Zack J. Butler,et al.  Distributed Planning and Control for Modular Robots with Unit-Compressible Modules , 2003, Int. J. Robotics Res..