Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections

Receptive field properties of visual cortical neurons depend on the spatiotemporal context within which the stimuli are presented. We have examined the temporal context dependence of cortical orientation tuning using dynamic visual stimuli with rapidly changing orientations. We found that tuning to the orientation of the test stimulus depended on a briefly presented preceding stimulus, with the preferred orientation shifting away from the preceding orientation. Analyses of the spatial-phase dependence of the shift showed that the effect cannot be explained by purely feedforward mechanisms, but can be accounted for by activity-dependent changes in the recurrent interactions between different orientation columns. Thus, short-term plasticity of the intracortical circuit can mediate dynamic modification of orientation tuning, which may be important for efficient visual coding.

[1]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Miller,et al.  Dynamics of neuronal sensitivity in visual cortex and local feature discrimination , 2002, Nature Neuroscience.

[3]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[4]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Y. Dan,et al.  Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation , 2001, Neuron.

[6]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[7]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[8]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[9]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[10]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain , 1989, Visual Neuroscience.

[11]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[12]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[13]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[14]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[16]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[17]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[18]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[19]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[20]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[22]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[23]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[24]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[25]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[27]  Richard Durbin,et al.  The computing neuron , 1989 .

[28]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[29]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[30]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[31]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[32]  I. Ohzawa,et al.  Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex , 1999, The Journal of Neuroscience.

[33]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[34]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[35]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[36]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[37]  J. Gibson Adaptation with negative after-effect. , 1937 .

[38]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[39]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[40]  C. Gilbert Plasticity in visual perception and physiology , 1996, Current Opinion in Neurobiology.

[41]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[42]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[43]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[44]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[45]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[46]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[47]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.