Natural Motion Generation for Humanoid Robots

This paper presents a method of generating natural-looking motion primitives for humanoid robots. An optimization-based approach is used to generate these primitives, but the objective function is tailored to each one and complexity is reduced by identifying relevant degrees of freedom. Several examples are shown in simulation: for an arm movement to reach an object, it is better to minimize the acceleration of key parts of the robot over its entire trajectory; for a single step on flat ground, it is better to minimize the torque and instantaneous angular momentum at every posture. The primitives are precomputed off-line, but might be used by on-line planner either to provide a fixed set of maneuvers or to bias a probabilistic, sample-based search for motions

[1]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[2]  Masahiro Fujita,et al.  Autonomous behavior control architecture of entertainment humanoid robot SDR-4X , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[4]  Shuuji Kajita,et al.  International Journal of Humanoid Robotics c ○ World Scientific Publishing Company An Analytical Method on Real-time Gait Planning for a Humanoid Robot , 2022 .

[5]  Shuuji Kajita,et al.  An Analytical Method for Real-Time Gait Planning for Humanoid Robots , 2006, Int. J. Humanoid Robotics.

[6]  Shuuji Kajita,et al.  Analytical Approach on Real-time Gait Planning for a Humanoid Robot , 2005 .

[7]  Michael Gleicher,et al.  Comparing Constraint-Based Motion Editing Methods , 2001, Graph. Model..

[8]  宇野 洋二,et al.  Formation and control of optimal trajectory in human multijoint arm movement : minimum torque-change model , 1988 .

[9]  Timothy Bretl,et al.  Multi-Step Motion Planning for Free-Climbing Robots , 2004, WAFR.

[10]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[11]  Kazuhito Yokoi,et al.  Generating whole body motions for a biped humanoid robot from captured human dances , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[13]  Timothy Bretl,et al.  Non-gaited humanoid locomotion planning , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[14]  David A. Forsyth,et al.  Enriching a motion collection by transplanting limbs , 2004, SCA '04.

[15]  Masayuki Inaba,et al.  Motion Planning for Humanoid Robots , 2003, ISRR.

[16]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, SIGGRAPH '05.

[17]  Kensuke Harada,et al.  Rolling-based manipulation for multiple objects , 2000, IEEE Trans. Robotics Autom..

[18]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[20]  Christopher G. Atkeson,et al.  Adapting human motion for the control of a humanoid robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[21]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[22]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Timothy Bretl,et al.  Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem , 2006, Int. J. Robotics Res..

[24]  Zhiwei Luo,et al.  On the dynamic version of the minimum hand jerk criterion , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).