Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments

Abstract This paper provides a new approach to the dynamic motion planning problems of mobile robots in uncertain dynamic environments based on the behavior dynamics from a control point of view. The fundamental behavior of a mobile robot in motion planning is regarded as a dynamic process of the interaction between the robot and its local environment, and then it is modeled and controlled for the motion-planning purpose. Based on behavior dynamics, the dynamic motion-planning problem of mobile robots is transformed into a control problem of the integrated planning-and-control system. And the dynamic motion-planning problem can be transformed into a conventional optimization problem in the robot's acceleration space. Realization of the collision-avoidance behavior is shown to be just a control problem of the robot's acceleration. The proposed method can directly provide the desired acceleration for mobile robots. No restrictions are assumed on the shape and trajectories of obstacles. No local minima are encountered in most cases. Collision avoidance between multiple mobile robots can also be realized. Stability of the whole planning-and-control system can be guaranteed. Our method provides a new insight to the motion-planning problem of mobile robots based on behavior dynamics and from the control point of view. Simulation experiments illustrate our results.

[1]  Yoshikazu Arai,et al.  Collision avoidance in multi-robot systems based on multi-layered reinforcement learning , 1999, Robotics Auton. Syst..

[2]  Kikuo Fujimura,et al.  Time-minimum routes in time-dependent networks , 1995, IEEE Trans. Robotics Autom..

[3]  P. Fiorini,et al.  Motion planning in dynamic environments using the relative velocity paradigm , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[4]  Christian Laugier,et al.  Motion Planning in Dynamic Environments , 2007 .

[5]  Jinhui Zhou,et al.  A real-time path planning approach without the computation of Cspace obstacles , 2004, Robotica.

[6]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[7]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[8]  Yuechao Wang,et al.  Artificial coordinating field based coordinating collision avoidance , 2003, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003.

[9]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[10]  Ronald C. Arkin,et al.  Local navigation strategies for a team of robots , 2003, Robotica.

[11]  Héctor H. González-Baños,et al.  A reactive motion planner to maintain visibility of unpredictable targets , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Xingjian Jing,et al.  Artificial coordinating field and its application to motion planning of robots in uncertain dynamic environments , 2004 .

[13]  J. Guldner,et al.  Sliding mode control for gradient tracking and robot navigation using artificial potential fields , 1995, IEEE Trans. Robotics Autom..

[14]  Vicente Matellán Olivera,et al.  Combining Classical and Reactive Planning: the ABC Model , 1998 .

[15]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[16]  Mark Drummond,et al.  Situated Control Rules , 1989, KR.

[17]  Martial Hebert,et al.  A behavior-based system for off-road navigation , 1994, IEEE Trans. Robotics Autom..

[18]  Debasish Ghose,et al.  Obstacle avoidance in a dynamic environment: a collision cone approach , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[20]  Thierry Fraichard,et al.  Dynamic trajectory planning with dynamic constraints: A 'state-time space' approach , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[21]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[22]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[23]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[24]  Ahmad A. Masoud,et al.  Constrained motion control using vector potential fields , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[25]  Tan Da-long Cooperative motion behaviors using biology-modeling behavior decision-making rules , 2003 .

[26]  Luis Moreno,et al.  Navigation of mobile robots: open questions , 2000, Robotica.

[27]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[28]  Jun Ota,et al.  Multirobot motion coordination in space and time , 1998, Robotics Auton. Syst..

[29]  Kimon P. Valavanis,et al.  Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic , 2001, IEEE Trans. Robotics Autom..

[30]  James A. Hendler,et al.  A model of reaction for planning in dynamic environments , 1988, Artif. Intell. Eng..

[31]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[32]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[33]  Jean-Claude Latombe,et al.  Motion planning in the presence of moving obstacles , 1992 .

[34]  Jing Xing RATIONAL GENETIC ALGORITHM AND ITS APPLICATION TO MOTION COOPERATION OF MULTIPLE MOBILE ROBOTS , 2002 .

[35]  Wang Yue-chao,et al.  Artificial coordinating field based real-time coordinating collision-avoidance planning for multiple mobile robots , 2004 .

[36]  Dayal R. Parhi,et al.  Navigation of multiple mobile robots using a neural network and a Petri Net model , 2003, Robotica.

[37]  Alain Oustaloup,et al.  Path planning by fractional differentiation , 2003, Robotica.

[38]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[39]  Hanan Samet,et al.  A hierarchical strategy for path planning among moving obstacles [mobile robot] , 1989, IEEE Trans. Robotics Autom..

[40]  Λυδια Καβρακη,et al.  RANDOM NETWORKS IN CONFIGURATION SPACE FOR FAST PATH PLANNING , 1994 .

[41]  Mourad Oussalah,et al.  Intelligent Adaptive Mobile Robot Navigation , 2001, J. Intell. Robotic Syst..

[42]  Madan M. Gupta,et al.  Cooperative collision avoidance between multiple mobile robots , 2000, J. Field Robotics.

[43]  K. Hunt APPLIED OPTIMAL CONTROL AND ESTIMATION : DIGITAL DESIGN AND IMPLEMENTATION , 1993 .

[44]  J. Lopez-Coronado,et al.  A real-time unsupervised neural network for the control of a mobile robot , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[45]  Albert Y. Zomaya,et al.  Obstacle Avoidance in Multi-Robot Systems - Experiments in Parallel Genetic Algorithms , 1998, World Scientific Series in Robotics and Intelligent Systems.

[46]  Alex Fukunaga,et al.  Cooperative mobile robotics: antecedents and directions , 1995 .

[47]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[48]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..