Origins of spatial, temporal and numerical cognition: Insights from comparative psychology

Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways.

[1]  M. Tomasello,et al.  Assessing the validity of ape-human comparisons: a reply to Boesch (2007). , 2008, Journal of comparative psychology.

[2]  A. Dickinson,et al.  Western Scrub-Jays Anticipate Future Needs Independently of Their Current Motivational State , 2007, Current Biology.

[3]  R. Gray,et al.  Hop, step and gape: do the social displays of the Pelecaniformes reflect phylogeny? , 1996, Animal Behaviour.

[4]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[5]  M. Corballis,et al.  Behavioural evidence for mental time travel in nonhuman animals , 2010, Behavioural Brain Research.

[6]  Jessica P. Stagner,et al.  Episodic-like memory: Pigeons can report location pecked when unexpectedly asked , 2008, Behavioural Processes.

[7]  K. Laland,et al.  Social intelligence, innovation, and enhanced brain size in primates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ken Cheng,et al.  Whither geometry? Troubles of the geometric module , 2008, Trends in Cognitive Sciences.

[9]  Marko Nardini,et al.  A viewpoint-independent process for spatial reorientation , 2009, Cognition.

[10]  Derek C. Penn,et al.  Darwin's mistake: Explaining the discontinuity between human and nonhuman minds , 2008, Behavioral and Brain Sciences.

[11]  Giorgio Vallortigara,et al.  Gravity bias in the interpretation of biological motion by inexperienced chicks , 2006, Current Biology.

[12]  Elizabeth M. Brannon,et al.  Beyond the number domain , 2009, Trends in Cognitive Sciences.

[13]  M. Arterberry,et al.  The Cradle of Knowledge: Development of Perception in Infancy , 1998 .

[14]  E. Spelke,et al.  Language and Conceptual Development series Core systems of number , 2004 .

[15]  Giorgio Vallortigara,et al.  Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment , 2007, Animal Cognition.

[16]  L. Regolin,et al.  Perception of partly occluded objects by young chicks , 1995, Perception & psychophysics.

[17]  Robin I. M. Dunbar The thinking ape: Evolutionary origins of intelligence , 1995 .

[18]  R. Mace,et al.  A phylogenetic approach to cultural evolution. , 2005, Trends in ecology & evolution.

[19]  A. Dickinson,et al.  Can animals recall the past and plan for the future? , 2003, Nature Reviews Neuroscience.

[20]  A. Dickinson,et al.  The control of food-caching behavior by Western scrub-jays (Aphelocoma californica). , 2007, Journal of experimental psychology. Animal behavior processes.

[21]  M. Tomasello,et al.  Humans Have Evolved Specialized Skills of Social Cognition: The Cultural Intelligence Hypothesis , 2007, Science.

[22]  M. Eacott,et al.  Behavioral / Systems / Cognitive Integrated Memory for Object , Place , and Context in Rats : A Possible Model of Episodic-Like Memory ? , 2004 .

[23]  Giorgio Vallortigara,et al.  Experience and geometry: controlled-rearing studies with chicks , 2010, Animal Cognition.

[24]  Giorgio Vallortigara,et al.  Visually Inexperienced Chicks Exhibit Spontaneous Preference for Biological Motion Patterns , 2005, PLoS biology.

[25]  Michael Tomasello,et al.  Primate Cognition , 2010, Top. Cogn. Sci..

[26]  Karen Emmorey,et al.  Evidence from an emerging sign language reveals that language supports spatial cognition , 2010, Proceedings of the National Academy of Sciences.

[27]  Katherine D. Kinzler,et al.  Core knowledge. , 2007, Developmental science.

[28]  Nicola S. Clayton,et al.  The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes , 2004, Science.

[29]  A. Henderson Phylogenetic analysis of morphological data , 2002, Brittonia.

[30]  Peter L. Hurd,et al.  Growing in Circles , 2007 .

[31]  Nora S. Newcombe,et al.  1 Explaining the Development of Spatial Reorientation : Modularity-Plus-Language Versus the Emergence of Adaptive Combination , 2007 .

[32]  Christian J. Rapold,et al.  Cognitive cladistics and cultural override in Hominid spatial cognition , 2006, Proceedings of the National Academy of Sciences.

[33]  Nicola S. Clayton,et al.  Intelligence in Corvids and Apes: A Case of Convergent Evolution? , 2009 .

[34]  Giorgio Vallortigara,et al.  Arithmetic in newborn chicks , 2009, Proceedings of the Royal Society B: Biological Sciences.

[35]  Giorgio Vallortigara,et al.  Reorienting strategies in a rectangular array of landmarks by domestic chicks (Gallus gallus). , 2010, Journal of comparative psychology.

[36]  Giorgio Vallortigara,et al.  Animals as Natural Geometers , 2009 .

[37]  Sang Ah Lee,et al.  A modular geometric mechanism for reorientation in children , 2010, Cognitive Psychology.

[38]  N. Newcombe,et al.  Is there a geometric module for spatial orientation? squaring theory and evidence , 2005, Psychonomic bulletin & review.

[39]  M. Pagel Human language as a culturally transmitted replicator , 2009, Nature Reviews Genetics.

[40]  Mathias Osvath,et al.  Spontaneous planning for future stone throwing by a male chimpanzee , 2009, Current Biology.

[41]  Anne-Mieke Vandamme,et al.  The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing , 2009 .

[42]  A. Dickinson,et al.  Episodic memory: what can animals remember about their past? , 1999, Trends in Cognitive Sciences.

[43]  Katherine D. Kinzler,et al.  Innateness, Learning, and Rationality. , 2009, Child development perspectives.

[44]  Valeria Anna Sovrano,et al.  Doing Socrates experiment right: controlled rearing studies of geometrical knowledge in animals , 2009, Current Opinion in Neurobiology.

[45]  A. Klin,et al.  Two-year-olds with autism orient to nonsocial contingencies rather than biological motion , 2009, Nature.

[46]  E. Tulving [Episodic memory: from mind to brain]. , 2004, Revue neurologique.

[47]  S. Shettleworth Cognition, evolution, and behavior , 1998 .

[48]  Nicholas J. Mulcahy,et al.  Apes Save Tools for Future Use , 2006, Science.

[49]  Giorgio Vallortigara,et al.  A left-sided visuospatial bias in birds , 2005, Current Biology.

[50]  H S Terrace,et al.  Ordering of the numerosities 1 to 9 by monkeys. , 1998, Science.

[51]  F. Simion,et al.  A predisposition for biological motion in the newborn baby , 2008, Proceedings of the National Academy of Sciences.

[52]  J. Call,et al.  Bonobos, chimpanzees, gorillas, and orang utans use feature and spatial cues in two spatial memory tasks , 2009, Animal Cognition.

[53]  W. Roberts,et al.  Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): tests of the Bischof-Kohler hypothesis. , 2006, Journal of comparative psychology.

[54]  M. Osvath,et al.  Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: self-control and pre-experience in the face of future tool use , 2008, Animal Cognition.

[55]  E. Murray,et al.  Rhesus Monkeys (Macaca Mulatta) Demonstrate Robust Memory for What and Where, but Not When, in an Open-Field Test of Memory. , 2005 .

[56]  C. Nunn,et al.  Phylogenetic Targeting of Research Effort in Evolutionary Biology , 2010, The American Naturalist.

[57]  D. Penny The comparative method in evolutionary biology , 1992 .

[58]  C. Nunn The Comparative Approach in Evolutionary Anthropology and Biology , 2011 .

[59]  Bruce Edmonds,et al.  Social Intelligence , 1999, Computational and mathematical organization theory.

[60]  Sara Cordes,et al.  The relative salience of discrete and continuous quantity in young infants. , 2009, Developmental science.

[61]  J. Call,et al.  Keeping track of time: evidence for episodic-like memory in great apes , 2009, Animal Cognition.

[62]  N. Clayton,et al.  Prospective cognition in animals , 2009, Behavioural Processes.

[63]  Thomas J. Wills,et al.  Development of the Hippocampal Cognitive Map in Preweanling Rats , 2010, Science.

[64]  A. Dickinson,et al.  Episodic-like memory during cache recovery by scrub jays , 1998, Nature.

[65]  J. Call,et al.  Tracking and inferring spatial rotation by children and great apes. , 2008, Developmental psychology.

[66]  Christian F. Doeller,et al.  Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory , 2008, Proceedings of the National Academy of Sciences.

[67]  Darwin ’ s mistake : Explaining the discontinuity between human and nonhuman minds , .

[68]  Dedre Gentner,et al.  Why we’re so smart , 2003 .

[69]  Josep Call,et al.  Tracking the displacement of objects: a series of tasks with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). , 2006, Journal of experimental psychology. Animal behavior processes.

[70]  J. Call,et al.  Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-by-item. , 2007, Journal of comparative psychology.

[71]  E. Gibson,et al.  The "visual cliff". , 1960, Scientific American.

[72]  E. Spelke,et al.  Infants' Discrimination of Number vs. Continuous Extent , 2002, Cognitive Psychology.

[73]  H. Wellman,et al.  Meta-analysis of theory-of-mind development: the truth about false belief. , 2001, Child development.

[74]  M. Corballis,et al.  Mental time travel and the evolution of the human mind. , 1997, Genetic, social, and general psychology monographs.

[75]  C. Boesch What makes us human (Homo sapiens)? The challenge of cognitive cross-species comparison. , 2007, Journal of comparative psychology.

[76]  J. Call,et al.  Evolutionary Psychology of Spatial Representations in the Hominidae , 2006, Current Biology.

[77]  A. Kappers Avian brains and a new understanding of vertebrate brain evolution , 2022 .

[78]  W. Fitch,et al.  Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies , 2010, Neuron.

[79]  Irene Leo,et al.  Perceptual completion in newborn human infants. , 2006, Child development.

[80]  S. Lycett,et al.  Cladistic analyses of behavioural variation in wild Pan troglodytes: exploring the chimpanzee culture hypothesis. , 2009, Journal of human evolution.

[81]  E. Tulving,et al.  Episodic and semantic memory , 1972 .

[82]  Antoine Wystrach,et al.  Ants Learn Geometry and Features , 2009, Current Biology.

[83]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[84]  Lisa Feigenson,et al.  A double-dissociation in infants' representations of object arrays , 2005, Cognition.

[85]  L. Schauble,et al.  Beyond Modularity: A Developmental Perspective on Cognitive Science. , 1994 .

[86]  J. Call,et al.  Great apes’ capacities to recognize relational similarity , 2009, Cognition.

[87]  W. Roberts,et al.  The comparative study of mental time travel , 2009, Trends in Cognitive Sciences.

[88]  Luke J. Matthews,et al.  The 10kTrees website: A new online resource for primate phylogeny , 2010 .

[89]  Michael Tomasello,et al.  Human-like social skills in dogs? , 2005, Trends in Cognitive Sciences.

[90]  Patrick McNamara,et al.  Does Sleep Play a Role in Memory Consolidation? A Comparative Test , 2009, PloS one.

[91]  A. Dickinson,et al.  Planning for the future by western scrub-jays , 2007, Nature.

[92]  Giorgio Vallortigara,et al.  Innate sensitivity for self-propelled causal agency in newly hatched chicks , 2010, Proceedings of the National Academy of Sciences.

[93]  Giorgio Vallortigara,et al.  Is it only humans that count from left to right? , 2010, Biology Letters.

[94]  Barbara Landau,et al.  Impaired geometric reorientation caused by genetic defect , 2010, Proceedings of the National Academy of Sciences.

[95]  Giorgio Vallortigara,et al.  Discrimination of small numerosities in young chicks. , 2008, Journal of experimental psychology. Animal behavior processes.

[96]  Patrick Bateson,et al.  Innateness and the Sciences , 2006 .

[97]  Justin Halberda,et al.  Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. , 2008, Developmental psychology.