Mechanisms of Neuronal Computation in Mammalian Visual Cortex

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[5]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[6]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[7]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[8]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[9]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[11]  G. Orban,et al.  Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. , 1985, Journal of neurophysiology.

[12]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[14]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[15]  A. Sestokas,et al.  Response variability of X- and Y-cells in the dorsal lateral geniculate nucleus of the cat. , 1988, Journal of neurophysiology.

[16]  D. Whitteridge,et al.  Selective responses of visual cortical cells do not depend on shunting inhibition , 1988, Nature.

[17]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[18]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[19]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[21]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[22]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[23]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[24]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[25]  P Heggelund,et al.  Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. , 1994, Journal of neurophysiology.

[26]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[27]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[29]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. G. Albrecht Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions , 1995, Visual Neuroscience.

[31]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[32]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[33]  R. Shapley,et al.  Temporal-frequency selectivity in monkey visual cortex , 1996, Visual Neuroscience.

[34]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[35]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[36]  B. McNaughton,et al.  Paradoxical Effects of External Modulation of Inhibitory Interneurons , 1997, The Journal of Neuroscience.

[37]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[38]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[39]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[40]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[41]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[42]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[43]  I. Ohzawa,et al.  Binocular cross-orientation suppression in the cat's striate cortex. , 1998, Journal of neurophysiology.

[44]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[45]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[46]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[47]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[48]  M. Volgushev,et al.  Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex , 2000, The European journal of neuroscience.

[49]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Alonso,et al.  Construction of Complex Receptive Fields in Cat Primary Visual Cortex , 2001, Neuron.

[51]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[52]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[53]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[54]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[55]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[56]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[57]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[58]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[59]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[60]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[61]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[62]  M. Carandini Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex , 2004, PLoS biology.

[63]  M. C. Morrone,et al.  Cross-orientation inhibition in cat is GABA mediated , 2004, Experimental Brain Research.

[64]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[65]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[66]  D. Tolhurst,et al.  Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[67]  Henry J. Alitto,et al.  Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. , 2004, Journal of neurophysiology.

[68]  Peter E. Latham,et al.  Computing and Stability in Cortical Networks , 2004, Neural Computation.

[69]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[70]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[71]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[72]  R. Freeman,et al.  Origins of cross-orientation suppression in the visual cortex. , 2006, Journal of neurophysiology.

[73]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[74]  Maria V. Sanchez-Vives,et al.  Impact of cortical network activity on short-term synaptic depression. , 2006, Cerebral cortex.

[75]  Nicholas J. Priebe,et al.  Mechanisms underlying cross-orientation suppression in cat visual cortex , 2006, Nature Neuroscience.

[76]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[77]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[78]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[79]  Nicholas J. Priebe,et al.  The Relationship between Subthreshold and Suprathreshold Ocular Dominance in Cat Primary Visual Cortex , 2008, The Journal of Neuroscience.

[80]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[81]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[82]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[83]  David Fitzpatrick,et al.  Erratum: A precise form of divisive suppression supports population coding in the primary visual cortex , 2009, Nature Neuroscience.

[84]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[85]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[86]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[87]  Hongbo Jia,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[88]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[89]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[90]  Jianhua Cang,et al.  Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex , 2010, Neuron.

[91]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[92]  Sandra J. Kuhlman,et al.  Fast-spiking interneurons have an initial orientation bias that is lost with vision , 2011, Nature Neuroscience.

[93]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[94]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[95]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[96]  D. Ferster,et al.  Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex , 2012, Neuron.

[97]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[98]  Nicholas J Priebe,et al.  The accuracy of membrane potential reconstruction based on spiking receptive fields. , 2012, Journal of neurophysiology.

[99]  C. Gilbert,et al.  Adult Visual Cortical Plasticity , 2012, Neuron.

[100]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[101]  Li I. Zhang,et al.  Broadening of Cortical Inhibition Mediates Developmental Sharpening of Orientation Selectivity , 2012, The Journal of Neuroscience.

[102]  M. Carandini,et al.  Normalization as a canonical neural computation , 2013, Nature Reviews Neuroscience.

[103]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.