Modelling the dynamics of contextual motion integration in the primate

Dans cette these, nous etudions l’integration du mouvement chez le primate. En se basant sur les connaissances actuelles concernant l’anatomie et les fonctions de deux aires corticales impliquees dans le mouvement, VI et MT, nous expliquons un certains nombre de reponses perceptuelles et oculo-motrices rapportees dans la litterature. Tout d’abord, nous construisons un modele recurrent d’integration du mouvement se basant sur un nombre minimal d’hypotheses concernant les interactions corticales. En proposant un simple mecanisme de « lecture », nous sommes capables de reproduire non seulement la perception, mais aussi les dynamiques oculaires de poursuite sur des stimuli de type ligne ou grille. De la, en se basant sur des etudes physiologiques concernant les champs recepteurs, nous construisons un deuxieme modele dynamique dans lequel l’information concernant le mouvement est dirigee par un signal de forme. Pour cela, nous postulons que le cortex visuel utilise la regularite de la luminance pour diriger la diffusion du mouvement. Un tel mecanisme elementaire de diffusion permet de resoudre des problemes contextuels, dans lesquels les jonctions extrinseques doivent etre ignorees, sans avoir besoin d’utiliser des mecanismes plus complexes tels que les detecteurs de jonctions ou le calcul de profondeur. Enfin, nous reformulons le modele initial dans le cadre du formalisme des champs neuronaux afin d’analyser mathematiquement ses proprietes. Nous incorporons la retroaction multiplicative dans le formalisme et prouvons l’existence et l’unicite de la solution. Afin de generaliser les comparaisons aux performances du systeme visuel, nous proposons une nouvelle methodologie d’evaluation basee sur les performances du systeme visuel humain, accompagnee d’une serie de videos issues de la litterature biologique et psychophysique. En effet, une methodologie d’evaluation adaptee nous semble essentielle afin de continuer les progres en modelisation des mecanismes neuraux impliques dans le traitement du mouvement. Pour conclure, nous analysons les performances de notre modele d’integration du mouvement en l’appliquant a des problemes classiques et recents issus de la vision par ordinateur. En depit de son objectif initial, notre modele est capable de donner des resultats comparables aux recentes approches proposees en vision par ordinateur au niveau de l’estimation de mouvement.

[1]  R. Sperry Effect of 180 degree rotation of the retinal field on visuomotor coordination , 1943 .

[2]  H. Wallach,et al.  Circles and derived figures in rotation. , 1956, The American journal of psychology.

[3]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[4]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[6]  L. L. Sloan,et al.  Reading Aids for the Partially Sighted: A Nontechnical Explanation of Basic Optical Principles , 1971, International ophthalmology clinics.

[7]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[8]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[9]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[10]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[11]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[12]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[13]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[14]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[15]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[16]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[17]  Ellen C. Hildreth,et al.  The detection of intensity changes by computer and biological vision systems , 1983, Comput. Vis. Graph. Image Process..

[18]  Karin Wall,et al.  A fast sequential method for polygonal approximation of digitized curves , 1984, Comput. Vis. Graph. Image Process..

[19]  C. Holt,et al.  Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[21]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[22]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[23]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[24]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[25]  Gordon E. Legge,et al.  Psychophysics of reading—II. Low vision , 1985, Vision Research.

[26]  G. Legge,et al.  Psychophysics of reading—I. Normal vision , 1985, Vision Research.

[27]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[28]  G E Legge,et al.  Psychophysics of reading. IV. Wavelength effects in normal and low vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[29]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[31]  E. J. Morris,et al.  Visual motion processing and sensory-motor integration for smooth pursuit eye movements. , 1987, Annual review of neuroscience.

[32]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[33]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[34]  K. Nakayama,et al.  The aperture problem—II. Spatial integration of velocity information along contours , 1988, Vision Research.

[35]  P. Degond,et al.  The weighted particle method for convection-diffusion equations. II. The anisotropic case , 1989 .

[36]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  G. Legge,et al.  Psychophysics of reading. VI—The role of contrast in low vision , 1989, Vision Research.

[38]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[39]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[40]  GORDON E. LEGGE,et al.  Psychophysics of Reading. VIII. The Minnesota Low- Vision Reading Test , 1989, Optometry and vision science : official publication of the American Academy of Optometry.

[41]  T. D. Albright,et al.  Transparency and coherence in human motion perception , 1990, Nature.

[42]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[43]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[44]  H. Wilson,et al.  Perceived direction of moving two-dimensional patterns , 1990, Vision Research.

[45]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[46]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[49]  B Moulden,et al.  Spatial Gating Effects on Judged Motion of Gratings in Apertures , 1992, Perception.

[50]  Maggie Shiffrar,et al.  The influence of terminators on motion integration across space , 1992, Vision Research.

[51]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[52]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[53]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[54]  Hugh R. Wilson,et al.  Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity , 1992, Vision Research.

[55]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[56]  F. Kooi Local direction of edge motion causes and abolishes the barberpole illusion , 1993, Vision Research.

[57]  M. Shiffrar,et al.  Different motion sensitive units are involved in recovering the direction of moving lines , 1993, Vision Research.

[58]  V. Ramachandran,et al.  Perception of transparency in stationary and moving images. , 1993, Spatial vision.

[59]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[60]  M. Shiffrar,et al.  Perceived speed of moving lines depends on orientation, length, speed and luminance , 1993, Vision Research.

[61]  Terrence J. Sejnowski,et al.  Filter selection model for motion segmentation and velocity integration , 1994 .

[62]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  U. Polat,et al.  The architecture of perceptual spatial interactions , 1994, Vision Research.

[64]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[65]  Maggie Shiffrar,et al.  Motion integration across differing image features , 1995, Vision Research.

[66]  Edward H. Adelson,et al.  Perceptually Organized Em: a Framework for Motion Segmentation That Combines Information about Form and Motion , 1995 .

[67]  I L Bailey,et al.  Reading and eye movements in age-related maculopathy. , 1995, Optometry and vision science : official publication of the American Academy of Optometry.

[68]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[69]  Paul J. Beckmann,et al.  Psychophysics of Reading—XIV. The Page Navigation Problem in Using Magnifiers , 1996, Vision Research.

[70]  L. Bowns Evidence for a Feature Tracking Explanation of Why Type II Plaids Move in the Vector Sum Direction at Short Durations , 1996, Vision Research.

[71]  Roderick Edwards,et al.  Approximation of Neural Network Dynamics by Reaction‐Diffusion Equations , 1996 .

[72]  A. F. Rossi,et al.  The representation of brightness in primary visual cortex. , 1996, Science.

[73]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[74]  M. Shiffrar,et al.  Increased Motion Linking Across Edges with Decreased Luminance Contrast, Edge Width and Duration , 1996, Vision Research.

[75]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[76]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[77]  J. Todd,et al.  Motion segmentation using temporal block matching and LEGION , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[78]  S Harland,et al.  Psychophysics of Reading. XVII. Low-Vision Performance with Four Types of Electronically Magnified Text , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[79]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[80]  S. Grossberg,et al.  Neural dynamics of motion processing and speed discrimination , 1998, Vision Research.

[81]  Georges-Henri Cottet,et al.  A Volterra type model for image processing , 1998, IEEE Trans. Image Process..

[82]  Anil K. Jain,et al.  Document Representation and Its Application to Page Decomposition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[84]  Ennio Mingolla,et al.  Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon , 1998, Vision Research.

[85]  J Lorenceau,et al.  Cooperative and competitive spatial interactions in motion integration , 1999, Visual Neuroscience.

[86]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[87]  D. Field,et al.  Integration of contours: new insights , 1999, Trends in Cognitive Sciences.

[88]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[89]  S. Grossberg,et al.  A neural model of motion processing and visual navigation by cortical area MST. , 1999, Cerebral cortex.

[90]  E Castet,et al.  Long-range interactions in the spatial integration of motion signals. , 1999, Spatial vision.

[91]  M. Giese Dynamic neural field theory for motion perception , 1998 .

[92]  G. Aubert,et al.  A mathematical study of the relaxed optical flow problem in the space BV (&Ω) , 1999 .

[93]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[94]  L. Stone,et al.  Speed tuning of motion segmentation and discrimination , 1999, Vision Research.

[95]  Eric Castet,et al.  The extrinsic/intrinsic classification of two-dimensional motion signals with barber-pole stimuli , 1999, Vision Research.

[96]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[97]  DeLiang Wang,et al.  An oscillatory correlation model of human motion perception , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[98]  Paul C. Bressloff,et al.  Dynamical Mechanism for Sharp Orientation Tuning in an Integrate-and-Fire Model of a Cortical Hypercolumn , 2000, Neural Computation.

[99]  E. Castet,et al.  Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies , 2000, Visual Neuroscience.

[100]  E H Adelson,et al.  Adventures with Gelatinous Ellipses—Constraints on Models of Human Motion Analysis , 2000, Perception.

[101]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[103]  Jean Lorenceau,et al.  A network view of the structure of center/surround modulations of V1 receptive field properties in visual and cortical spaces , 2001, Neurocomputing.

[104]  Christopher C. Pack,et al.  Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys , 2001, Nature.

[105]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[106]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[107]  Jean Lorenceau,et al.  Form constraints in motion binding , 2001, Nature Neuroscience.

[108]  Christopher T. Lovelace,et al.  Mechanisms of synesthesia: cognitive and physiological constraints , 2001, Trends in Cognitive Sciences.

[109]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[110]  David J. Fleet,et al.  Velocity Likelihoods in Biological and Machine Vision , 2001 .

[111]  D. Pelli,et al.  Crowding is unlike ordinary masking : Distinguishing feature detection and integration , 2001 .

[112]  S G Lisberger,et al.  Shifts in the Population Response in the Middle Temporal Visual Area Parallel Perceptual and Motor Illusions Produced by Apparent Motion , 2001, The Journal of Neuroscience.

[113]  H. Komatsu,et al.  and Hidehiko Komatsu Primary Visual Cortex Brightness of a Uniform Surface in the Macaque Neural Representation of the Luminance and , 2001 .

[114]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[115]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[116]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, ECCV.

[117]  Luc Van Gool,et al.  Motion - Stereo Integration for Depth Estimation , 2002, ECCV.

[118]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[119]  Eric Castet,et al.  Parallel Motion Processing for the Initiation of Short-Latency Ocular Following in Humans , 2002, The Journal of Neuroscience.

[120]  Norberto M Grzywacz,et al.  Measurement of angular velocity in the perception of rotation , 2002, Vision Research.

[121]  Susana T. L. Chung The effect of letter spacing on reading speed in central and peripheral vision. , 2002, Investigative ophthalmology & visual science.

[122]  Y. Frégnac,et al.  Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex , 2002, Vision Research.

[123]  F. Bremmer,et al.  Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. , 2002, Cerebral cortex.

[124]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[125]  Ione Fine,et al.  Surface segmentation based on the luminance and color statistics of natural scenes , 2002 .

[126]  L. Stone,et al.  From following edges to pursuing objects. , 2002, Journal of neurophysiology.

[127]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[128]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[129]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[130]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[131]  Nava Rubin,et al.  The dynamics of bi-stable alternation in ambiguous motion displays: a fresh look at plaids , 2003, Vision Research.

[132]  Stephen Grossberg,et al.  Laminar cortical dynamics of visual form perception , 2003, Neural Networks.

[133]  Hidehiko Komatsu,et al.  Functional organization of the cat visual cortex in relation to the representation of a uniform surface. , 2003, Journal of neurophysiology.

[134]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[135]  R. F Hess,et al.  Contour integration and cortical processing , 2003, Journal of Physiology-Paris.

[136]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[137]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[138]  Joshua C. Brumberg,et al.  A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations , 1996, Journal of Computational Neuroscience.

[139]  Ali A. Minai,et al.  Temporally sequenced intelligent block-matching and motion-segmentation using locally coupled networks , 2004, IEEE Transactions on Neural Networks.

[140]  Chandra M. Harrison Low-vision reading aids: reading as a pleasurable experience , 2004, Personal and Ubiquitous Computing.

[141]  Michael D Crossland,et al.  Fixation stability and reading speed in patients with newly developed macular disease * , 2004, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[142]  Bo Yu,et al.  Pulse-coupled neural networks for contour and motion matchings , 2004, IEEE Transactions on Neural Networks.

[143]  Nicholas J. Priebe,et al.  Estimating Target Speed from the Population Response in Visual Area MT , 2004, The Journal of Neuroscience.

[144]  H. Rodman,et al.  Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT) , 2004, Experimental Brain Research.

[145]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[146]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[147]  Aries Arditi,et al.  Adjustable typography: an approach to enhancing low vision text accessibility , 2004, Ergonomics.

[148]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[149]  Bernard Girau,et al.  A CONNECTIONIST APPROACH FOR VISUAL PERCEPTION OF MOTION , 2004 .

[150]  Alan Kingstone,et al.  Cross-modal dynamic capture: congruency effects in the perception of motion across sensory modalities. , 2004, Journal of experimental psychology. Human perception and performance.

[151]  Heiko Neumann,et al.  Disambiguating Visual Motion Through Contextual Feedback Modulation , 2004, Neural Computation.

[152]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[153]  Eli Peli,et al.  Preferred Retinal Locus and Reading Rate with Four Dynamic Text Presentation Formats , 2004, Optometry and vision science : official publication of the American Academy of Optometry.

[154]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[155]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[156]  Claudio Castellanos Sánchez,et al.  On-chip visual perception of motion: A bio-inspired connectionist model on FPGA , 2005, Neural Networks.

[157]  J. Movshon,et al.  Dynamics of motion signaling by neurons in macaque area MT , 2005, Nature Neuroscience.

[158]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[159]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[160]  D. V. van Essen,et al.  Peaked encoding of relative luminance in macaque areas V1 and V2. , 2005, Journal of Neurophysiology.

[161]  R. Krauzlis The Control of Voluntary Eye Movements: New Perspectives , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[162]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[163]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[164]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[165]  Guillaume S Masson,et al.  Object motion computation for the initiation of smooth pursuit eye movements in humans. , 2005, Journal of neurophysiology.

[166]  Konstantinos G. Derpanis,et al.  Three-dimensional nth derivative of Gaussian separable steerable filters , 2005, IEEE International Conference on Image Processing 2005.

[167]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[168]  Xin Huang,et al.  Lightness, filling-in, and the fundamental role of context in visual perception. , 2006, Progress in brain research.

[169]  G. Rubin,et al.  New standardised texts for assessing reading performance in four European languages , 2006, British Journal of Ophthalmology.

[170]  Bart Krekelberg,et al.  Interactions between Speed and Contrast Tuning in the Middle Temporal Area: Implications for the Neural Code for Speed , 2006, The Journal of Neuroscience.

[171]  P. Kornprobst,et al.  The SOLAIRE Project: A Gaze-Contingent System to Facilitate Reading for Patients with Scotomatas , 2006 .

[172]  Carlos R. Ponce,et al.  Temporal evolution of 2-dimensional direction signals used to guide eye movements. , 2005, Journal of neurophysiology.

[173]  Robert A. Frazor,et al.  Local luminance and contrast in natural images , 2006, Vision Research.

[174]  H. Offret Computational Maps in the Visual Cortex , 2006 .

[175]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[176]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[177]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[178]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[179]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[180]  I. Vanzetta,et al.  Behavioral receptive field for ocular following in humans: dynamics of spatial summation and center-surround interactions. , 2006, Journal of neurophysiology.

[181]  D. G. Albrecht,et al.  Responses of Neurons in Primary Visual Cortex to Transient Changes in Local Contrast and Luminance , 2007, The Journal of Neuroscience.

[182]  Andreas Paepcke,et al.  EyePoint: practical pointing and selection using gaze and keyboard , 2007, CHI.

[183]  Pierre Kornprobst,et al.  Biological model of motion integration and segmentation based on form cues , 2007 .

[184]  Bevil R. Conway,et al.  Contrast affects speed tuning, space-time slant, and receptive-field organization of simple cells in macaque V1. , 2007, Journal of neurophysiology.

[185]  T. Albright,et al.  Adaptive Surround Modulation in Cortical Area MT , 2007, Neuron.

[186]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[187]  J. Graham Strong,et al.  The Legibility of Typefaces for Readers with Low Vision: A Research Review , 2007 .

[188]  Agustín Salgado de la Nuez,et al.  Temporal Constraints in Large Optical Flow Estimation , 2007, EUROCAST.

[189]  Pascal Mamassian,et al.  Bayesian modeling of dynamic motion integration , 2007, Journal of Physiology-Paris.

[190]  Pierre Kornprobst,et al.  How do high-level specifications of the brain relate to variational approaches? , 2007, Journal of Physiology-Paris.

[191]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[192]  Guillaume S. Masson,et al.  Dynamics of distributed 1D and 2D motion representations for short-latency ocular following , 2008, Vision Research.

[193]  Olivier D. Faugeras,et al.  Absolute Stability and Complete Synchronization in a Class of Neural Fields Models , 2008, SIAM J. Appl. Math..

[194]  Pierre Kornprobst,et al.  757 SolairePDF, un logiciel d’aide à la lecture de documents PDF pour les patients basse vision , 2008 .

[195]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[196]  Dimitrios S. Alexiadis,et al.  Narrow directional steerable filters in motion estimation , 2008, Comput. Vis. Image Underst..

[197]  Uwe J. Ilg,et al.  The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit , 2008, Vision Research.

[198]  Pierre Kornprobst,et al.  Navisio: Towards an integrated reading aid system for low vision patients , 2008 .

[199]  Pierre Kornprobst,et al.  Motion integration modulated by form information , 2008 .

[200]  D. Bradley,et al.  Velocity computation in the primate visual system , 2008, Nature Reviews Neuroscience.

[201]  Xin Huang,et al.  Stimulus Dependency and Mechanisms of Surround Modulation in Cortical Area MT , 2008, The Journal of Neuroscience.

[202]  Pierre Kornprobst,et al.  Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.

[203]  John M. Foley,et al.  Psychophysics of Reading in Normal and Low Vision , 2008 .

[204]  Pierre Kornprobst,et al.  A Simple Mechanism to Reproduce the Neural Solution of the Aperture Problem in Monkey Area MT , 2008 .

[205]  Stefan Treue,et al.  Combining spatial and feature-based attention within the receptive field of MT neurons , 2009, Vision Research.

[206]  Pierre Kornprobst,et al.  Can the Nonlocal Characterization of Sobolev Spaces by Bourgain et al. Be Useful for Solving Variational Problems? , 2009, SIAM J. Numer. Anal..

[207]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[208]  Jitendra Malik,et al.  Large displacement optical flow , 2009, CVPR.

[209]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[210]  Nicolas P. Rougier,et al.  Saccades Generation - From the Visual Input to the Superior Colliculus , 2010, IJCCI.

[211]  Guillaume S. Masson,et al.  Dynamics of Visual Motion Processing , 2010 .

[212]  Guillaume S Masson,et al.  Temporal dynamics of 2D motion integration for ocular following in macaque monkeys. , 2010, Journal of neurophysiology.

[213]  H. Neumann,et al.  Attention and figure-ground segregation in a model of motion perception , 2010 .

[214]  Olivier Faugeras,et al.  Some theoretical and numerical results for delayed neural field equations , 2010 .

[215]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[216]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[217]  Christopher C. Pack,et al.  Integration of motion signals over regions of uniform luminance by MT neurons in the alert macaque , 2010 .

[218]  Heiko Neumann,et al.  Interactions of motion and form in visual cortex – A neural model , 2008, Journal of Physiology-Paris.

[219]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[220]  O. Faugeras,et al.  Illusions in the Ring Model of visual orientation selectivity , 2010, 1007.2493.

[221]  Pierre Kornprobst,et al.  A dynamical neural model of motion integration , 2010 .

[222]  Pierre Kornprobst,et al.  Evaluating Motion Estimation Models from Behavioural and Psychophysical Data , 2010, BIONETICS.

[223]  R. Cole,et al.  Survey of the State of the Art in Human Language Technology , 2010 .

[224]  Gustavo Deco,et al.  The role of multi-area interactions for the computation of apparent motion , 2010, NeuroImage.

[225]  Pierre Kornprobst,et al.  Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems , 2011, EURASIP J. Adv. Signal Process..

[226]  D. Hubel,et al.  With 2 Plate and 20 Text-ftgutre8 Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex Cat Visual Cortex Part I Organization of Receptive Fields in Cat's Visual Cortex: Properties of 'simple' and 'complex' Fields Complex Receptive Fields , 2022 .