Automated indirect transport of biological cells with optical tweezers using planar gripper formations

Optical tweezers are used for manipulation of micron-sized dielectric beads and cells. Some biological cells are vulnerable to photo damage if subjected to laser-based direct manipulation. In such cases, precise manipulation of these cells can be accomplished by using gripper formations made up of silica beads, which are actuated by optical tweezers. Manual indirect manipulation of cells using grippers made of optically trapped beads is a time consuming process or sometimes just impossible. This paper presents an approach for automated micromanipulation using gripper formations and heuristic based path planning for collision-free transport of biological cells. The objective of the developed planner is to transport target cells to their respective goal positions in the minimum time. we evaluated the performance of different gripper formations in terms of gripper stability, speed of transport, and required laser power using experiments.

[1]  Sagar Chowdhury,et al.  Investigation of Automated Cell Manipulation in Optical Tweezers-Assisted Microfluidic Chamber Using Simulations , 2011 .

[2]  Satyandra K. Gupta,et al.  Gripper synthesis for indirect manipulation of cells using Holographic Optical Tweezers , 2012, 2012 IEEE International Conference on Robotics and Automation.

[3]  Jun Wang,et al.  Synthesis of force-closure grasps on 3-D objects based on the Q distance , 2003, IEEE Trans. Robotics Autom..

[4]  Reid G. Simmons,et al.  Particle RRT for Path Planning with Uncertainty , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[5]  Nicholas Roy,et al.  Adapting probabilistic roadmaps to handle uncertain maps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Wenhao Huang,et al.  Force analysis and path planning of the trapped cell in robotic manipulation with optical tweezers , 2010, 2010 IEEE International Conference on Robotics and Automation.

[7]  Satyandra K. Gupta,et al.  Real-Time Path Planning for Coordinated Transport of Multiple Particles Using Optical Tweezers , 2012, IEEE Transactions on Automation Science and Engineering.

[8]  Xiangyang Zhu,et al.  An Efficient Algorithm for Grasp Synthesis and Fixture Layout Design in Discrete Domain , 2007, IEEE Transactions on Robotics.

[9]  Sagar Chowdhury,et al.  Indirect optical gripping with triplet traps , 2011 .

[10]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[11]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[12]  Sagar Chowdhury,et al.  Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins. , 2011, Journal of biomedical optics.

[13]  Menghong Sun,et al.  Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. , 2006, Optics letters.

[14]  Dong Sun,et al.  Automatic transportation of biological cells with a robot-tweezer manipulation system , 2011, Int. J. Robotics Res..

[15]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[16]  Chia-Hsiang Menq,et al.  Minimum-variance Brownian motion control of an optically trapped probe. , 2009, Applied optics.

[17]  Kenji Yasuda,et al.  On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. , 2003, Biochemical and biophysical research communications.

[18]  Franz Reuleaux,et al.  The Kinematics of Machinery , 2016, Nature.

[19]  Mark H. Overmars,et al.  Orienting polyhedral parts by pushing , 2002, Comput. Geom..

[20]  Xiaolin Wang,et al.  Cell sorting with combined optical tweezers and microfluidic chip technologies , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[21]  Maximo A. Roa,et al.  Medidas de calidad para la prensión de objetos , 2008 .

[22]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[23]  T. Fukuda,et al.  On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. , 2005, Lab on a chip.

[24]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[25]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[26]  Fumihito Arai,et al.  3D Manipulation of lipid nanotubes using laser trapped functional gel microbeads , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Tadej Bajd,et al.  Reducing positioning uncertainty of objects by robot pushing , 1994, IEEE Trans. Robotics Autom..

[28]  Philippe Gorce,et al.  Dynamic control of pushing operations , 1999, Robotica.

[29]  Satyandra K. Gupta,et al.  Generating Simplified Trapping Probability Models From Simulation of Optical Tweezers System , 2009, J. Comput. Inf. Sci. Eng..

[30]  Fumihito Arai,et al.  Multi-beam laser micromanipulation of microtool by integrated optical tweezers , 2009, 2009 IEEE International Conference on Robotics and Automation.

[31]  Matthew T. Mason,et al.  Posing Polygonal Objects in the Plane by Pushing , 1998, Int. J. Robotics Res..

[32]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[33]  K. König,et al.  Cell damage by near-IR microbeams , 1995, Nature.

[34]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[35]  G J Streekstra,et al.  A new method to study shape recovery of red blood cells using multiple optical trapping. , 1995, Biophysical journal.

[36]  Sven Koenig,et al.  Fast replanning for navigation in unknown terrain , 2005, IEEE Transactions on Robotics.