Artificial General Intelligence: 13th International Conference, AGI 2020, St. Petersburg, Russia, September 16–19, 2020, Proceedings

Can an AGI create a more intelligent AGI? Under idealized assumptions, for a certain theoretical type of intelligence, our answer is: “Not without outside help”. This is a paper on the mathematical structure of AGI populations when parent AGIs create child AGIs. We argue that such populations satisfy a certain biological law. Motivated by observations of sexual reproduction in seemingly-asexual species, the KnightDarwin Law states that it is impossible for one organism to asexually produce another, which asexually produces another, and so on forever: that any sequence of organisms (each one a child of the previous) must contain occasional multi-parent organisms, or must terminate. By proving that a certain measure (arguably an intelligence measure) decreases when an idealized parent AGI single-handedly creates a child AGI, we argue that a similar Law holds for AGIs.

[1]  Alain Lecomte Meaning, Logic and Ludics , 2011 .

[2]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[3]  J. Hawkins,et al.  On Intelligence , 2004 .

[4]  Drew McDermott,et al.  A critique of pure reason 1 , 1987, The Philosophy of Artificial Intelligence.

[5]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[6]  Jürgen Schmidhuber,et al.  Evolving neural networks in compressed weight space , 2010, GECCO '10.

[7]  Aaron Hunter Learning Belief Revision Operators , 2018, Canadian Conference on AI.

[8]  Shigetoshi Nara,et al.  Memory search using complex dynamics in a recurrent neural network model , 1993, Neural Networks.

[9]  Mubarak Shah,et al.  Abnormal crowd behavior detection using social force model , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[11]  S. Homer,et al.  Quantum circuits: power and limitations , 2010 .

[12]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[13]  Ben Goertzel,et al.  Speculative Scientific Inference via Synergetic Combination of Probabilistic Logic and Evolutionary Pattern Recognition , 2015, AGI.

[14]  Aleksandr I. Panov,et al.  Toward Faster Reinforcement Learning for Robotics: Using Gaussian Processes , 2019, RAAI Summer School.

[15]  Nick Chater,et al.  Networks in Cognitive Science , 2013, Trends in Cognitive Sciences.

[16]  José Hernández-Orallo,et al.  Computer models solving intelligence test problems: Progress and implications , 2016, Artif. Intell..

[17]  Aleksandr I. Panov,et al.  Hierarchical Reinforcement Learning Approach for the Road Intersection Task , 2019, BICA.

[18]  Helge J. Ritter,et al.  Physical Bongard Problems , 2012, AIAI.

[19]  Gee Wah Ng,et al.  Scene understanding using DSO Cognitive Architecture , 2012, 2012 15th International Conference on Information Fusion.

[20]  Shlomo Zilberstein,et al.  Operational Rationality through Compilation of Anytime Algorithms , 1995, AI Mag..

[21]  Stephen M. Omohundro,et al.  The Basic AI Drives , 2008, AGI.

[22]  Jonathan W. Leland,et al.  Experimental tests of the Somatic Marker hypothesis , 2005, Games Econ. Behav..

[23]  Hagai Attias,et al.  Planning by Probabilistic Inference , 2003, AISTATS.

[24]  H. Simon,et al.  Administrative Behavior: A Study of Decision-Making Processes in Administrative Organization. , 1959 .

[25]  D. Diderot,et al.  Pensées Philosophiques. Addition aux Pensées Philosophiques. Lettre Sur les Aveugles. Additions À la Lettre Sur les Aveugles. Supplément au Voyage de Bougainville , 1972 .

[26]  R. Penrose,et al.  How Long Until Human-Level AI ? Results from an Expert Assessment , 2011 .

[27]  Evgenii Vityaev,et al.  A Formal Model of Neuron That Provides Consistent Predictions , 2012, BICA.

[28]  G. Matthews,et al.  A philosophy of childhood , 2021, Gareth B. Matthews, The Child's Philosopher.

[29]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[30]  Gee Wah Ng,et al.  DSO Cognitive Architecture: Implementation and Validation of the Global Workspace Enhancement , 2018, AGI.

[31]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[32]  Ben Goertzel,et al.  Theoretical Foundations of Artificial General Intelligence , 2012, Atlantis Thinking Machines.

[33]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[34]  W. K. Simmons,et al.  Interoceptive predictions in the brain , 2015, Nature Reviews Neuroscience.

[35]  Paola Mello,et al.  Solving Mathematical Puzzles: A Challenging Competition for AI , 2017, AI Mag..

[36]  Sam Freed Is Programming Done by Projection and Introspection? , 2017, PT-AI.

[37]  Michael E. Bratman,et al.  Intention, Plans, and Practical Reason , 1991 .

[38]  Dileep George,et al.  Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics , 2017, ICML.

[39]  Aleksandr I. Panov,et al.  Hierarchical Psychologically Inspired Planning for Human-Robot Interaction Tasks , 2019, ICR.

[40]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[42]  K. Sudakov [Stress: postulates, analysis in terms of the general theory of functional systems]. , 1992, Patologicheskaia fiziologiia i eksperimental'naia terapiia.

[43]  Satinder P. Singh,et al.  Transfer via soft homomorphisms , 2009, AAMAS.

[44]  Hiroaki Kitano,et al.  Artificial Intelligence to Win the Nobel Prize and Beyond: Creating the Engine for Scientific Discovery , 2016, AI Mag..

[45]  Zachary C. Irving,et al.  The Neuroscience of Spontaneous Thought: An Evolving, Interdisciplinary Field , 2017, 1704.02533.

[46]  P. Langley Intelligent Behavior in Humans and Machines , 2012 .

[47]  Yarden Katz,et al.  Noam Chomsky on Where Artificial Intelligence Went Wrong , 2012 .

[48]  Clifford Nass,et al.  Computers are social actors , 1994, CHI '94.

[49]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[50]  S. Rani,et al.  REVIEW ON NEURAL NETWORKS ASSOCIATIVE MEMORY MODELS , 2018 .

[51]  Daswin De Silva,et al.  Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[52]  Leon Kester,et al.  Extending Socio-Technological Reality for Ethics in Artificial Intelligent Systems , 2019, 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR).

[53]  Stathis Psillos,et al.  An Explorer upon Untrodden Ground: Peirce on Abduction , 2011, Inductive Logic.

[54]  Ute Schmid,et al.  Inductive rule learning on the knowledge level , 2011, Cognitive Systems Research.

[55]  Waqar Mahmood,et al.  A survey of ontology learning techniques and applications , 2018, Database J. Biol. Databases Curation.

[56]  Alexei V. Samsonovich,et al.  Socially emotional brain-inspired cognitive architecture framework for artificial intelligence , 2020, Cognitive Systems Research.

[57]  Finale Doshi-Velez,et al.  The Infinite Partially Observable Markov Decision Process , 2009, NIPS.

[58]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[59]  Pei Wang,et al.  Experience-grounded semantics: a theory for intelligent systems , 2005, Cognitive Systems Research.

[60]  Ben Goertzel,et al.  Economic Attention Networks: Associative Memory and Resource Allocation for General Intelligence , 2009 .

[61]  Pietro Michelucci,et al.  Cumulative Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[62]  H. Lövheim A new three-dimensional model for emotions and monoamine neurotransmitters. , 2012, Medical hypotheses.

[63]  Marcus Hutter,et al.  Reward tampering problems and solutions in reinforcement learning: a causal influence diagram perspective , 2019, Synthese.

[64]  S. Alexander Infinite Graphs in Systematic Biology, with an Application to the Species Problem , 2012, Acta biotheoretica.

[65]  Kristinn R. Thórisson,et al.  Cumulative Learning with Causal-Relational Models , 2018, AGI.

[66]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[67]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[68]  B. Jack Copeland,et al.  The Turing Test* , 2000, Minds and Machines.

[69]  Silvia Coradeschi,et al.  A Short Review of Symbol Grounding in Robotic and Intelligent Systems , 2013, KI - Künstliche Intelligenz.

[70]  Alexey Potapov,et al.  Analyzing Elementary School Olympiad Math Tasks as a Benchmark for AGI , 2020, AGI.

[71]  Luca Fumagalli,et al.  Exploring the role of Digital Twin for Asset Lifecycle Management , 2018 .

[72]  Þröstur Thorarensen,et al.  FraMoTEC: A Framework for Modular Task-Environment Construction for Evaluating Adaptive Control Systems , 2016 .

[73]  Seth D. Baum Reconciliation between factions focused on near-term and long-term artificial intelligence , 2017, AI & SOCIETY.

[74]  Selmer Bringsjord,et al.  Creativity, the Turing Test, and the (Better) Lovelace Test , 2001, Minds and Machines.

[75]  David B. Fogel,et al.  DEFINING ARTIFICIAL INTELLIGENCE , 2005 .

[76]  Aleksandr Bakhshiev,et al.  Mathematical Model of the Impulses Transformation Processes in Natural Neurons for Biologically Inspired Control Systems Development , 2015, AIST.

[77]  G. Popkin The hidden pattern , 2017 .

[78]  G. Mandler Machines Who Think: A Personal Inquiry Into the History and Prospects of Artificial Intelligence. , 1981 .

[79]  Friedrich T. Sommer,et al.  A Theory of Sequence Indexing and Working Memory in Recurrent Neural Networks , 2018, Neural Computation.

[80]  Victor Kaptelinin,et al.  Acting with technology: Activity theory and interaction design , 2006, First Monday.

[81]  Dhruv Batra,et al.  Don't Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Appa Rao Korukonda Taking stock of Turing test: a review, analysis, and appraisal of issues surrounding thinking machines , 2003, Int. J. Hum. Comput. Stud..

[83]  Morten L. Kringelbach,et al.  Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics , 2019, Springer Series on Bio- and Neurosystems.

[84]  Mikhail Belkin,et al.  Two models of double descent for weak features , 2019, SIAM J. Math. Data Sci..

[85]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[86]  Selmer Bringsjord,et al.  Psychometric Artificial General Intelligence: The Piaget-MacGuyver Room , 2012 .

[87]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[88]  Benjamin Johnston The Toy Box Problem (and a Preliminary Solution) , 2010, AGI 2010.

[89]  Ben Goertzel,et al.  OpenCog: A Software Framework for Integrative Artificial General Intelligence , 2008, AGI.

[90]  W. Gantt Biology and Neurophysiology of the Conditioned Reflex and Its Role in Adaptive Behavior , 1976 .

[91]  Sean A. Spence,et al.  Descartes' Error: Emotion, Reason and the Human Brain , 1995 .

[92]  Pentti Kanerva,et al.  Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors , 2009, Cognitive Computation.

[93]  Stacy Marsella,et al.  A domain-independent framework for modeling emotion , 2004, Cognitive Systems Research.

[94]  J. Pearl Bayesianism and Causality, or, Why I am Only a Half-Bayesian , 2001 .

[95]  Arvind Narayanan,et al.  Semantics derived automatically from language corpora contain human-like biases , 2016, Science.

[96]  Simona Ronchi Della Rocca,et al.  Lambda Calculus and Probabilistic Computation , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[97]  Joscha Bach,et al.  Generic Animats , 2017, AGI.

[98]  Geoffrey Zweig,et al.  Spoken language understanding using long short-term memory neural networks , 2014, 2014 IEEE Spoken Language Technology Workshop (SLT).

[99]  Anton Kolonin,et al.  Programmatic Link Grammar Induction for Unsupervised Language Learning , 2019, AGI.

[100]  Alexei V. Samsonovich,et al.  Virtual Listener: A Turing-like test for behavioral believability , 2020 .

[101]  Dieter Schönecker,et al.  I M M A N U E L K A N T Groundwork of the Metaphysics of Morals , 2011 .

[102]  Selmer Bringsjord,et al.  What is Artificial Intelligence? Psychometric AI as an Answer , 2003, IJCAI.

[103]  Daniel Dominic Sleator,et al.  Parsing English with a Link Grammar , 1995, IWPT.

[104]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[105]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[106]  Clémentine Bosch-Bouju,et al.  Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions , 2013, Front. Comput. Neurosci..

[107]  John R. Anderson How Can the Human Mind Occur in the Physical Universe , 2007 .

[108]  John B. Watson IS THINKING MERELY ACTION OF LANGUAGE MECHANISMS1? (V.) , 1920 .

[109]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[110]  Hiroshi Ishiguro,et al.  Android science: Toward a new cross-interdisciplinary framework , 2005 .

[111]  Ben Goertzel,et al.  Artificial General Intelligence: Concept, State of the Art, and Future Prospects , 2009, J. Artif. Gen. Intell..

[112]  R Nathan Spreng,et al.  Intrinsic default—executive coupling of the creative aging brain , 2019, Social cognitive and affective neuroscience.

[113]  Konstantin S. Yakovlev,et al.  Psychologically inspired planning method for smart relocation task , 2016, BICA.

[114]  Paul M. B. Vitányi,et al.  Shannon Information and Kolmogorov Complexity , 2004, ArXiv.

[115]  H. Dreyfus What Computers Can't Do: The Limits of Artificial Intelligence , 1978 .

[116]  Chuang Gan,et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes Words and Sentences from Natural Supervision , 2019, ICLR.

[117]  Ben Goertzel,et al.  Introduction: Aspects of Artificial General Intelligence , 2007, AGI.

[118]  Ross D. Shachter,et al.  Pearl Causality and the Value of Control , 2016 .

[119]  J. Russell A circumplex model of affect. , 1980 .

[120]  José Hernández-Orallo,et al.  A New AI Evaluation Cosmos: Ready to Play the Game? , 2017, AI Mag..

[121]  James Babcock,et al.  Artificial General Intelligence , 2016, Lecture Notes in Computer Science.

[122]  Sam Freed AI and Human Thought and Emotion , 2019 .

[123]  Kyung-Joong Kim,et al.  Recent Advances in General Game Playing , 2015, TheScientificWorldJournal.

[124]  J. Watson Psychology As The Behaviorist Views It , 2011 .

[125]  Pascal Vincent,et al.  Iteratively unveiling new regions of interest in Deep Learning models , 2018 .

[126]  K. Rockland,et al.  Some thoughts on cortical minicolumns , 2004, Experimental Brain Research.

[127]  Sridhar Mahadevan,et al.  Imagination Machines: A New Challenge for Artificial Intelligence , 2018, AAAI.

[128]  David Kremelberg,et al.  Embodiment as a Necessary a Priori of General Intelligence , 2019, AGI.

[129]  Dedre Gentner,et al.  Relational Categories are More Mutable than Entity Categories , 2017, Quarterly journal of experimental psychology.

[130]  Gregor Wiedemann,et al.  Does BERT Make Any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings , 2019, KONVENS.

[131]  Tommi S. Jaakkola,et al.  Towards Robust Interpretability with Self-Explaining Neural Networks , 2018, NeurIPS.

[132]  John N. Tsitsiklis,et al.  Actor-Critic Algorithms , 1999, NIPS.

[133]  Jean-Yves Girard Locus Solum: From the Rules of Logic to the Logic of Rules , 2001, CSL.

[134]  Oren Etzioni,et al.  Solving Geometry Problems: Combining Text and Diagram Interpretation , 2015, EMNLP.

[135]  Ann Nowé,et al.  Scalarized multi-objective reinforcement learning: Novel design techniques , 2013, 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

[136]  Victor R. Lesser,et al.  Design-to-time real-time scheduling , 1993, IEEE Trans. Syst. Man Cybern..

[137]  Jürgen Schmidhuber,et al.  Gödel Machines: Fully Self-referential Optimal Universal Self-improvers , 2007, Artificial General Intelligence.

[138]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[139]  Nils J. Nilsson,et al.  Human-Level Artificial Intelligence? Be Serious! , 2005, AI Mag..

[140]  Oren Etzioni,et al.  My Computer Is an Honor Student - but How Intelligent Is It? Standardized Tests as a Measure of AI , 2016, AI Mag..

[141]  Myriam Quatrini,et al.  Ludics and Natural Language: First Approaches , 2012, LACL.

[142]  Pei Wang,et al.  Problem Solving With Insufficient Resources , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[143]  Lexing Xie,et al.  Action Schema Networks: Generalised Policies with Deep Learning , 2017, AAAI.

[144]  Aleksandr I. Panov,et al.  Spatial Reasoning and Planning in Sign-Based World Model , 2018 .

[145]  Kirk N. Olsen,et al.  Stimulation of the primary motor cortex enhances creativity and technical fluency of piano improvisations , 2018 .

[146]  Aaron Hunter,et al.  GenB: A General Solver for AGM Revision , 2016, JELIA.

[147]  Ben Goertzel,et al.  Probabilistic Logic Networks , 2009 .

[148]  Bas R. Steunebrink,et al.  Evaluation of General-Purpose Artificial Intelligence : Why , What & How , 2016 .

[149]  Tim Oates,et al.  INTRODUCTION: SPECIAL ISSUE ON APPLICATIONS OF GRAMMATICAL INFERENCE , 2008, Appl. Artif. Intell..

[150]  A. I. Panov,et al.  Goal Setting and Behavior Planning for Cognitive Agents , 2019, Scientific and Technical Information Processing.

[151]  Gee Wah Ng,et al.  DSO cognitive architecture in mobile surveillance , 2012, 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[152]  Eric P. Xing,et al.  Learning to Solve Geometry Problems from Natural Language Demonstrations in Textbooks , 2017, *SEMEVAL.

[153]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[154]  Dewen Hu,et al.  Multiobjective Reinforcement Learning: A Comprehensive Overview , 2015, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[155]  T. Deacon,et al.  Language Development From an Ecological Perspective: Ecologically Valid Ways to Abstract Symbols , 2018 .

[156]  P. White Appraisal Theory , 2015 .

[157]  Aleksandr I. Panov,et al.  Mental Actions and Modelling of Reasoning in Semiotic Approach to AGI , 2019, AGI.

[158]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[159]  Christopher D. Manning,et al.  A Structural Probe for Finding Syntax in Word Representations , 2019, NAACL.

[160]  L. Squire Memory systems of the brain: A brief history and current perspective , 2004, Neurobiology of Learning and Memory.

[161]  George Houghton,et al.  The problem of serial order: a neural network model of sequence learning and recall , 1990 .

[162]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[163]  Bruce J. MacLennan,et al.  Continuous Formal Systems: A Unifying Model in Language and Cognition , 1995 .

[164]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[165]  R. Brandom,et al.  Between Saying and Doing: Towards an Analytic Pragmatism , 2008 .

[166]  Patrick Hammer,et al.  Goal-Directed Procedure Learning , 2018, AGI.

[167]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[168]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[169]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[170]  Hugo Latapie,et al.  A Reasoning Based Model for Anomaly Detection in the Smart City Domain , 2020, IntelliSys.

[171]  Kristinn R. Thórisson,et al.  SAGE: Task-Environment Platform for Evaluating a Broad Range of AI Learners , 2020, AGI.

[172]  Pedro M. Domingos,et al.  Hybrid Markov Logic Networks , 2008, AAAI.

[173]  Antonio R. Damasio,et al.  Homeostasis and soft robotics in the design of feeling machines , 2019, Nature Machine Intelligence.

[174]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[175]  Pei Wang,et al.  Non-Axiomatic Reasoning System (Version 4.1) , 2000, AAAI/IAAI.

[176]  Robert Arp,et al.  Building Ontologies with Basic Formal Ontology , 2015 .

[177]  Mikhail Belkin,et al.  Reconciling modern machine-learning practice and the classical bias–variance trade-off , 2018, Proceedings of the National Academy of Sciences.

[178]  Radchenko Information Mechanisms of Neuron and Neural memory@@@Информационные механизмы нейрона и нейронной памяти , 2014 .

[179]  Karl Raimund Sir Popper,et al.  The Myth of the Framework : In Defence of Science and Rationality , 1997 .

[180]  Terry Winograd,et al.  Understanding computers and cognition - a new foundation for design , 1987 .

[181]  D. Dong,et al.  Quantum reinforcement learning during human decision-making , 2020, Nature Human Behaviour.

[182]  P. Churchland Plato's Camera: How the Physical Brain Captures a Landscape of Abstract Universals , 2012 .

[183]  Douglas L. T. Rohde,et al.  An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence , 2005 .

[184]  Stacy Marsella,et al.  EMA: A process model of appraisal dynamics , 2009, Cognitive Systems Research.

[185]  Jürgen Schmidhuber,et al.  Bounded Recursive Self-Improvement , 2013, ArXiv.

[186]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[187]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[188]  Robert A. Legenstein,et al.  Long short-term memory and Learning-to-learn in networks of spiking neurons , 2018, NeurIPS.

[189]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[190]  Patrick Hammer Adaptive Neuro-Symbolic Network Agent , 2019, AGI.

[191]  Koen Holtman,et al.  Towards AGI Agent Safety by Iteratively Improving the Utility Function , 2020, AGI.

[192]  Y. Ahmet Sekercioglu,et al.  Holographic Graph Neuron: A Bioinspired Architecture for Pattern Processing , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[193]  Ausif Mahmood,et al.  Review of Deep Learning Algorithms and Architectures , 2019, IEEE Access.

[194]  Alexei V. Samsonovich,et al.  On semantic map as a key component in socially-emotional BICA , 2018, BICA 2018.

[195]  Shane Legg,et al.  Universal Intelligence: A Definition of Machine Intelligence , 2007, Minds and Machines.

[196]  Steve Blank The Four Steps to the Epiphany: Successful Strategies for Products that Win , 2013 .

[197]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[198]  Dhruv Batra,et al.  Measuring Machine Intelligence Through Visual Question Answering , 2016, AI Mag..

[199]  Yang Liu,et al.  Dependency Grammar Induction with a Neural Variational Transition-based Parser , 2018, AAAI.

[200]  Itamar Arel,et al.  Beyond the Turing Test , 2009, Computer.

[201]  Alexei V. Samsonovich,et al.  Schema formalism for the common model of cognition , 2018, Biologically Inspired Cognitive Architectures.

[202]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[203]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[204]  Ben Goertzel,et al.  Engineering General Intelligence, Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy , 2014 .

[205]  G. Edelman,et al.  The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function , 1978 .

[206]  Laurent Goffart,et al.  Saccadic Eye Movements , 2009 .

[207]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[208]  Keith Spence Hans-Georg Gadamer , 2006 .

[209]  Eric A. Hansen,et al.  Solving POMDPs by Searching in Policy Space , 1998, UAI.

[210]  Elliot Meyerson,et al.  Evolutionary architecture search for deep multitask networks , 2018, GECCO.

[211]  Eray Özkural,et al.  Zeta Distribution and Transfer Learning Problem , 2018, AGI.

[212]  Saint Louis,et al.  Competent Program Evolution , 2006 .

[213]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[214]  Valerio Targon,et al.  Toward Semiotic Artificial Intelligence , 2018, BICA.

[215]  R. Solomonoff Progress In Incremental Machine Learning , 2003 .

[216]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[217]  Aaron Hunter,et al.  An Efficient Solver for Parametrized Difference Revision , 2019, Australasian Conference on Artificial Intelligence.

[218]  Jianfeng Gao,et al.  Enhancing the Transformer with Explicit Relational Encoding for Math Problem Solving , 2019, ArXiv.

[219]  Kristinn R. Thórisson,et al.  Why Artificial Intelligence Needs a Task Theory - And What It Might Look Like , 2016, AGI.

[220]  Pei Wang,et al.  The OpenNARS Implementation of the Non-Axiomatic Reasoning System , 2016, AGI.

[221]  John A. Stankovic,et al.  Real-time computing systems: the next generation , 1988 .

[222]  G. Hesslow The current status of the simulation theory of cognition , 2012, Brain Research.

[223]  Marcus Hutter,et al.  Universal Algorithmic Intelligence: A Mathematical Top→Down Approach , 2007, Artificial General Intelligence.

[224]  Leon Kester,et al.  Artificial Creativity Augmentation , 2020, AGI.

[225]  Oren Etzioni,et al.  Learning to Solve Arithmetic Word Problems with Verb Categorization , 2014, EMNLP.

[226]  Gavriel Salomon,et al.  T RANSFER OF LEARNING , 1992 .

[227]  Ricardo Gattass,et al.  Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey , 2003, The Journal of Neuroscience.

[228]  Timothée Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[229]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[230]  Artur S. d'Avila Garcez,et al.  Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge , 2016, NeSy@HLAI.

[231]  Eray Özkural Towards Heuristic Algorithmic Memory , 2011, AGI.

[232]  K. A. Ericsson,et al.  Protocol Analysis: Verbal Reports as Data , 1984 .

[233]  Cynthia Breazeal,et al.  Emotion and sociable humanoid robots , 2003, Int. J. Hum. Comput. Stud..

[234]  M. Benedek The Neuroscience of Creative Idea Generation , 2018 .

[235]  David Hume An Inquiry Concerning the Principles of Morals , 2006 .

[236]  L. F. Barrett,et al.  Growing a social brain , 2018, Nature Human Behaviour.

[237]  Alexei V. Samsonovich,et al.  Emotional biologically inspired cognitive architecture , 2013, BICA 2013.

[238]  D. Chalmers Facing Up to the Problem of Consciousness , 1995 .

[239]  D. Thomas King,et al.  Mind over Machine. , 1978 .

[240]  Pedro M. Domingos,et al.  Unifying Logical and Statistical AI , 2006, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[241]  Anca D. Dragan,et al.  The Off-Switch Game , 2016, IJCAI.

[242]  R'emi Louf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[243]  Daniel McNeill Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our World , 1993 .

[244]  Richard L. Lewis,et al.  A computational unification of cognitive behavior and emotion , 2009, Cognitive Systems Research.

[245]  Johanna Seibt,et al.  How to Naturalize Sensory Consciousness and Intentionality within a Process Monism with Normativity Gradient , 2016 .

[246]  Eric Horvitz,et al.  Reasoning about beliefs and actions under computational resource constraints , 1987, Int. J. Approx. Reason..

[247]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[248]  V. K. Finn,et al.  On axiomatization of many-valued logics associated with formalization of plausible reasonings , 1989, Stud Logica.

[249]  Gee Wah Ng,et al.  DSO Cognitive Architecture: Unified Reasoning with Integrative Memory Using Global Workspace Theory , 2017, AGI.

[250]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[251]  G. S. Osipov,et al.  Relationships and Operations in a Sign-Based World Model of the Actor , 2018, Scientific and Technical Information Processing.

[252]  Hung-Yi Lee,et al.  Tree Transformer: Integrating Tree Structures into Self-Attention , 2019, EMNLP/IJCNLP.

[253]  A. Sloman Beyond Shallow Models of Emotion , 2001 .

[254]  Kenneth D. Forbus,et al.  Analogical model formulation for transfer learning in AP Physics , 2009, Artif. Intell..

[255]  B. Gaut,et al.  Creativity and Art: Three Roads to Surprise , 2012 .

[256]  Stephen I. Gallant,et al.  Representing Objects, Relations, and Sequences , 2013, Neural Computation.

[257]  Yuxi Li,et al.  Deep Reinforcement Learning: An Overview , 2017, ArXiv.

[258]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[259]  Jean-Yves Girard From foundations to ludics , 2003, Bull. Symb. Log..

[260]  John E. Laird,et al.  The Soar Cognitive Architecture , 2012 .

[261]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[262]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[263]  Marc G. Bellemare,et al.  The Arcade Learning Environment: An Evaluation Platform for General Agents , 2012, J. Artif. Intell. Res..

[264]  Gary L. Drescher The Schema Mechanism , 1993, Machine Learning: From Theory to Applications.

[265]  Gee Wah Ng,et al.  A Cognitive Architecture for Knowledge Exploitation , 2010, AGI 2010.

[266]  Noam Chomsky,et al.  A Review of B. F. Skinner's Verbal Behavior , 1980 .

[267]  Hubert L. Dreyfus,et al.  Why Heideggerian AI Failed and How Fixing it Would Require Making it More Heideggerian , 2007, Artif. Intell..

[268]  Sam Freed,et al.  A role for introspection in AI research , 2017 .

[269]  邱扬 Hermeneutics , 2022, Hinduism and Tribal Religions.

[270]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[271]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[272]  R. A. Davidoff From Neuron to Brain , 1977, Neurology.

[273]  Stuart Armstrong,et al.  Motivated Value Selection for Artificial Agents , 2015, AAAI Workshop: AI and Ethics.

[274]  Alexey Potapov,et al.  Cognitive Module Networks for Grounded Reasoning , 2019, AGI.

[275]  Terry L. Jernigan,et al.  The Basics of Brain Development , 2010, Neuropsychology Review.

[276]  J. Hendler,et al.  The Challenges of Real-time Ai , 1995 .

[277]  Andrew Hodges,et al.  Alan Turing: The Enigma: The Book That Inspired the Film The Imitation Game - Updated Edition , 2014 .

[278]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[279]  John-Jules Ch. Meyer,et al.  Reasoning about emotional agents , 2004, Int. J. Intell. Syst..

[280]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[281]  Matthias Rauterberg,et al.  Dynamic representations for autonomous driving , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[282]  L. F. Barrett The theory of constructed emotion: an active inference account of interoception and categorization , 2016, Social cognitive and affective neuroscience.

[283]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.

[284]  S. Odintsov,et al.  How to Predict Consistently? , 2018, Trends in Mathematics and Computational Intelligence.

[285]  Doina Precup,et al.  Automatic Construction of Temporally Extended Actions for MDPs Using Bisimulation Metrics , 2011, EWRL.

[286]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[287]  Y. Kuniyoshi,et al.  Embodied Artificial Intelligence , 2004, Lecture Notes in Computer Science.

[288]  LinLin Shen,et al.  Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[289]  Ming Li,et al.  Normalized Information Distance , 2008, ArXiv.

[290]  Christophe Fouqueré Ludics and Web: Another Reading of Standard Operations , 2011, PRELUDE Project.

[291]  Joanna Rączaszek-Leonardi,et al.  Language as a System of Replicable Constraints , 2012 .

[292]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[293]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[294]  Pei Wang,et al.  Non-axiomatic reasoning system: exploring the essence of intelligence , 1996 .

[295]  Peter Norvig,et al.  On Chomsky and the Two Cultures of Statistical Learning , 2017 .

[296]  Julian M. Pine,et al.  Constructing a Language: A Usage-Based Theory of Language Acquisition. , 2004 .

[297]  S. Tavernier,et al.  Neural network-based position estimators for PET detectors using monolithic LSO blocks , 2004, IEEE Transactions on Nuclear Science.

[298]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[299]  Valerio Targon Learning the Semantics of Notational Systems with a Semiotic Cognitive Automaton , 2015, Cognitive Computation.

[300]  Alexey Potapov,et al.  Vision System for AGI: Problems and Directions , 2018, AGI.

[301]  C. Hartshorne,et al.  Collected Papers of Charles Sanders Peirce , 1935, Nature.

[302]  Jürgen Schmidhuber,et al.  Anytime Bounded Rationality , 2015, AGI.

[303]  Lauren Wilcox,et al.  A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy , 2020, CHI.

[304]  David Ellerman,et al.  An Introduction to Logical Entropy and its Relation to Shannon Entropy , 2013, Int. J. Semantic Comput..

[305]  John F. Sowa,et al.  Mapping the Landscape of Human-Level Artificial General Intelligence , 2012, AI Mag..

[306]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[307]  Razvan Pascanu,et al.  Imagination-Augmented Agents for Deep Reinforcement Learning , 2017, NIPS.

[308]  N. Mohapatra,et al.  Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET , 2017, Scientific Reports.

[309]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[310]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[311]  Robert Plutchik,et al.  A psychoevolutionary theory of emotions , 1982 .

[312]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[313]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[314]  Aaron Sloman Kantian Philosophy of Mathematics and Young Robots , 2008, AISC/MKM/Calculemus.

[315]  Ron Sun,et al.  From implicit skills to explicit knowledge: a bottom-up model of skill learning , 2001, Cogn. Sci..

[316]  Pushmeet Kohli,et al.  Analysing Mathematical Reasoning Abilities of Neural Models , 2019, ICLR.

[317]  Kenneth A. De Jong,et al.  Human-Level Psychometrics for Cognitive Architectures , 2006 .

[318]  J. van Leeuwen,et al.  Alan Turing : His Work and Impact , 2014 .

[319]  Pei Wang,et al.  Rigid Flexibility: The Logic of Intelligence , 2006 .

[320]  Claudia Faggian,et al.  Ludics with Repetitions (Exponentials, Interactive Types and Completeness) , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[321]  The Temporal Responses of Neurons in The Primary Visual Cortex to Transient Stimuli*: The Temporal Responses of Neurons in The Primary Visual Cortex to Transient Stimuli* , 2013 .

[322]  Daniel C. Dennett,et al.  Intuition Pumps and Other Tools for Thinking , 2013 .

[323]  Pei Wang,et al.  Case-by-Case Problem Solving , 2009 .

[324]  Omer Levy,et al.  Linguistic Regularities in Sparse and Explicit Word Representations , 2014, CoNLL.

[325]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[326]  Pei Wang,et al.  Solving a Problem With or Without a Program , 2013, J. Artif. Gen. Intell..

[327]  Alexei V. Samsonovich,et al.  Empirical and modeling study of emotional state dynamics in social videogame paradigms , 2020, Cognitive Systems Research.

[328]  Leora Morgenstern,et al.  Planning, Executing, and Evaluating the Winograd Schema Challenge , 2016, AI Mag..

[329]  Andy E. Williams A Model for Human, Artificial & Collective Consciousness (Part I) , 2019 .

[330]  Chitta Baral,et al.  Learning to Automatically Solve Logic Grid Puzzles , 2015, EMNLP.

[331]  Hector J. Levesque,et al.  The Winograd Schema Challenge , 2011, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[332]  Peter Clark Elementary School Science and Math Tests as a Driver for AI: Take the Aristo Challenge! , 2015, AAAI.

[333]  S. Harnad Minds, Machines and Turing: The Indistinguishability of Indistinguishables , 2000 .

[334]  S. Karson,et al.  A Guide to the Clinical Use of the 16 PF , 1976 .

[335]  H. Simon,et al.  The shape of automation for men and management , 1965 .

[336]  Ben Goertzel,et al.  Engineering General Intelligence, Part 2: The CogPrime Architecture for Integrative, Embodied AGI , 2014 .

[337]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[338]  Jürgen Schmidhuber,et al.  Searching for Minimal Neural Networks in Fourier Space , 2010, AGI 2010.

[339]  Ankur Teredesai,et al.  Interpretable Machine Learning in Healthcare , 2018, 2018 IEEE International Conference on Healthcare Informatics (ICHI).

[340]  Stuart J. Russell,et al.  Principles of Metareasoning , 1989, Artif. Intell..

[341]  Nima Dehghani,et al.  A Computational Perspective of the Role of the Thalamus in Cognition , 2018, Neural Computation.

[342]  Stephan Schiffel,et al.  Towards Flexible Task Environments for Comprehensive Evaluation of Artificial Intelligent Systems and Automatic Learners , 2015, AGI.

[343]  J. Barnden Metaphor and artificial intelligence: Why they matter to each other. , 2008 .

[344]  Jerry Feldman Mind as Machine: A History of Cognitive Science, Margaret Boden. Oxford U. Press (2006) , 2007 .

[345]  Leonard E. Miller,et al.  NASA systems engineering handbook , 1995 .

[346]  Omer Levy,et al.  SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems , 2019, NeurIPS.

[347]  Costin Badica,et al.  Role of Non-Axiomatic Logic in a Distributed Reasoning Environment , 2017, ICCCI.

[348]  Alexei V. Samsonovich,et al.  Virtual Actor with Social-Emotional Intelligence , 2018 .

[349]  Nick Bostrom,et al.  Future Progress in Artificial Intelligence: A Survey of Expert Opinion , 2013, PT-AI.

[350]  J. Girard The Blind Spot: Lectures on Logic , 2011 .

[351]  Tansu Alpcan,et al.  Can we measure the difficulty of an optimization problem? , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[352]  Murray Campbell,et al.  I-athlon: Towards A Multidimensional Turing Test , 2016, AI Mag..

[353]  Stuart Armstrong,et al.  'Indifference' methods for managing agent rewards , 2017, ArXiv.

[354]  Shane T. Mueller #.c World Scienti¯c Publishing Company DOI: 10.1142/S1793843010000497 A PARTIAL IMPLEMENTATION OF THE BICA COGNITIVE DECATHLON USING THE PSYCHOLOGY EXPERIMENT BUILDING LANGUAGE (PEBL) , 2022 .

[355]  Alexey Redozubov,et al.  Holographic Memory: A Novel Model of Information Processing by Neuronal Microcircuits , 2017 .

[356]  J A Scott Kelso,et al.  Reconciling symbolic and dynamic aspects of language: Toward a dynamic psycholinguistics. , 2008, New ideas in psychology.

[357]  Noémie Elhadad,et al.  A convex and feature-rich discriminative approach to dependency grammar induction , 2015, ACL.

[358]  R. J. B. The Child's Conception of the World , 1929, Nature.

[359]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[360]  Mark O. Riedl The Lovelace 2.0 Test of Artificial Creativity and Intelligence , 2014, ArXiv.

[361]  J. M. Kittross The measurement of meaning , 1959 .

[362]  Peter B. Galvin,et al.  Operating System Concepts, 4th Ed. , 1993 .

[363]  Michael Spranger,et al.  Injecting Prior Knowledge for Transfer Learning into Reinforcement Learning Algorithms using Logic Tensor Networks , 2019, ArXiv.

[364]  Tamas Madl,et al.  LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning , 2014, IEEE Transactions on Autonomous Mental Development.

[365]  Andre Cohen,et al.  An object-oriented representation for efficient reinforcement learning , 2008, ICML '08.

[366]  Ricardo Ribeiro Gudwin,et al.  A Comparison Among Cognitive Architectures: A Theoretical Analysis , 2015, BICA.

[367]  R L Thorndike,et al.  Structure of intelligence. , 1967, Proceedings of the annual meeting of the American Psychopathological Association.

[368]  Pei Wang,et al.  Insufficient Knowledge and Resources - A Biological Constraint and Its Functional Implications , 2009, AAAI Fall Symposium: Biologically Inspired Cognitive Architectures.

[369]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[370]  Wolfgang Reisig,et al.  Understanding Petri Nets Modeling Techniques, Analysis Methods, Case Studies , 2013, Bull. EATCS.

[371]  Peter Stone,et al.  Transfer Learning for Reinforcement Learning Domains: A Survey , 2009, J. Mach. Learn. Res..

[372]  Geoffrey E. Hinton,et al.  Distributed representations and nested compositional structure , 1994 .

[373]  J. Hernández-Orallo,et al.  AI results for the Atari 2600 games : difficulty and discrimination using IRT , 2017 .

[374]  J. Rehling,et al.  The parallel terraced scan: an optimization for an agent-oriented architecture , 1997, 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335).