Current Issues in Sampling-Based Motion Planning

In this paper, we discuss the field of sampling-based motion planning. In contrast to methods that construct boundary representations of configuration space obstacles, samplingbased methods use only information from a collision detector as they search the configuration space. The simplicity of this approach, along with increases in computation power and the development of efficient collision detection algorithms, has resulted in the introduction of a number of powerful motion planning algorithms, capable of solving challenging problems with many degrees of freedom. First, we trace how sampling-based motion planning has developed. We then discuss a variety of important issues for sampling-based motion planning, including uniform and regular sampling, topological issues, and search philosophies. Finally, we address important issues regarding the role of randomization in sampling-based motion planning.

[1]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[2]  M. Inaba,et al.  Humanoid arm motion planning using stereo vision and RRT search , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[3]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[4]  Nancy M. Amato,et al.  Using Motion Planning to Study Protein Folding Pathways , 2002, J. Comput. Biol..

[5]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Lydia E. Kavraki,et al.  Randomized path planning for linkages with closed kinematic chains , 2001, IEEE Trans. Robotics Autom..

[7]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[8]  Tsai-Yen Li,et al.  An incremental learning approach to motion planning with roadmap management , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[10]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[11]  Bernhard Glavina,et al.  Solving findpath by combination of goal-directed and randomized search , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  Brad E. Paden,et al.  Path planning using a Jacobian-based freespace generation algorithm , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[13]  Pekka Isto,et al.  Constructing probabilistic roadmaps with powerful local planning and path optimization , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[15]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[18]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[19]  H. Niederreiter,et al.  Nets, ( t, s )-Sequences, and Algebraic Geometry , 1998 .

[20]  James P. Ostrowski,et al.  Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[21]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[22]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[23]  Jean-Claude Latombe,et al.  A Monte-Carlo algorithm for path planning with many degrees of freedom , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[24]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[26]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[27]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[28]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[29]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[30]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[31]  Bruce Randall Donald,et al.  Real-time robot motion planning using rasterizing computer graphics hardware , 1990, SIGGRAPH.

[32]  Steven M. LaValle,et al.  Resolution complete rapidly-exploring random trees , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[34]  Koichi Kondo,et al.  Motion planning with six degrees of freedom by multistrategic bidirectional heuristic free-space enumeration , 1991, IEEE Trans. Robotics Autom..

[35]  Pierre Bessière,et al.  The Ariadne's Clew Algorithm , 1993, J. Artif. Intell. Res..

[36]  Steven M. LaValle,et al.  Quasi-randomized path planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Steven M. LaValle,et al.  Incremental low-discrepancy lattice methods for motion planning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[38]  Bernard Faverjon,et al.  Hierarchical object models for efficient anti-collision algorithms , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[39]  A. G. Sukharev Optimal strategies of the search for an extremum , 1971 .

[40]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[41]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[42]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[43]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[44]  Robert Bohlin,et al.  Path planning in practice; lazy evaluation on a multi-resolution grid , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[45]  Daniel Thalmann,et al.  Planning Collision‐Free Reaching Motions for Interactive Object Manipulation and Grasping , 2003, Comput. Graph. Forum.

[46]  Nancy M. Amato,et al.  Choosing good distance metrics and local planners for probabilistic roadmap methods , 2000, IEEE Trans. Robotics Autom..

[47]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[48]  Jean-Claude Latombe,et al.  Planning motions with intentions , 1994, SIGGRAPH.

[49]  Fred J. Hickernell,et al.  Randomized Halton sequences , 2000 .

[50]  Yong K. Hwang,et al.  SANDROS: a motion planner with performance proportional to task difficulty , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[51]  Dinesh Manocha,et al.  Randomized Path Planning for a Rigid Body Based on Hardware Accelerated Voronoi Sampling , 1999 .

[52]  Boris Baginski,et al.  The Z^3-Method for Fast Path Planning in Dynamic Environments , 1996 .

[53]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[54]  Manuela M. Veloso,et al.  Real-Time Randomized Path Planning for Robot Navigation , 2002, RoboCup.

[55]  B. Faverjon,et al.  A local based approach for path planning of manipulators with a high number of degrees of freedom , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[56]  B. Donald Motion Planning with Six Degrees of Freedom , 1984 .

[57]  Michael S. Branicky,et al.  Nonlinear and Hybrid Control Via RRTs , 2002 .

[58]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[59]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[60]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[61]  Boris Baginski,et al.  Motion planning for manipulators with many degrees of freedom - the BB-method , 1999, DISKI.

[62]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .