Probabilistic Models of the Brain.

[1]  Richard Szeliski,et al.  Bayesian modeling of uncertainty in low-level vision , 2011, International Journal of Computer Vision.

[2]  Helge J. Ritter,et al.  Linear correlation-based learning models require a two-stage process for the development of orientation and ocular dominance , 2004, Neural Processing Letters.

[3]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[4]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[5]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[6]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[7]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[8]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[9]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[10]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[11]  Paul R. Schrater,et al.  Pattern inference theory: A probabilistic approach to vision , 2002 .

[12]  Pascal Mamassian,et al.  Interaction of visual prior constraints , 2001, Vision Research.

[13]  P. Mamassian,et al.  Prior knowledge on the illumination position , 2001, Cognition.

[14]  Eero P. Simoncelli,et al.  Modeling temporal response characteristics of V1 neurons with a dynamic normalization model , 2001, Neurocomputing.

[15]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[16]  Massimiliano Pontil,et al.  On the Noise Model of Support Vector Machines Regression , 2000, ALT.

[17]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[18]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[19]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[20]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[21]  Alan L. Yuille,et al.  Fundamental Limits of Bayesian Inference: Order Parameters and Phase Transitions for Road Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Paul R. Schrater,et al.  Mechanisms of visual motion detection , 2000, Nature Neuroscience.

[25]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[26]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[27]  Rajesh P. N. Rao,et al.  Predictive Sequence Learning in Recurrent Neocortical Circuits , 1999, NIPS.

[28]  K. Jarrod Millman,et al.  Learning Sparse Codes with a Mixture-of-Gaussians Prior , 1999, NIPS.

[29]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[30]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[31]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[32]  Y. Frégnac,et al.  Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. , 1999, Journal of neurobiology.

[33]  Eric Saund Perceptual Organization of Occluding Contours of Opaque Surfaces , 1999, Comput. Vis. Image Underst..

[34]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[35]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[36]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[37]  Alan L. Yuille,et al.  Bayesian A* Tree Search with Expected O(N) Convergence Rates for Road Tracking , 1999, EMMCVPR.

[38]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[39]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[40]  Alan L. Yuille,et al.  Fundamental bounds on edge detection: an information theoretic evaluation of different edge cues , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[41]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[42]  Wulfram Gerstner,et al.  Spiking neurons , 1999 .

[43]  M. Banks,et al.  Estimator Reliability and Distance Scaling in Stereoscopic Slant Perception , 1999, Perception.

[44]  D. Brainard,et al.  Mechanisms of color constancy under nearly natural viewing. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[46]  Daniel Kersten,et al.  High-level Vision as Statistical Inference , 1999 .

[47]  David Haussler,et al.  Probabilistic kernel regression models , 1999, AISTATS.

[48]  Paul R. Schrater,et al.  Statistical Structure and Task Dependence in Visual Cue Integration 1 , 1999 .

[49]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[50]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[51]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[52]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[53]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  F. Girosi,et al.  Sparse Correlation Kernel Analysis and Reconstruction , 1998 .

[55]  Terrence J. Sejnowski,et al.  Coding Time-Varying Signals Using Sparse, Shift-Invariant Representations , 1998, NIPS.

[56]  William T. Freeman,et al.  Learning to Estimate Scenes from Images , 1998, NIPS.

[57]  Sen Song,et al.  Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability , 1998, NIPS.

[58]  Peter Dayan,et al.  Distributional Population Codes and Multiple Motion Models , 1998, NIPS.

[59]  M. Hershenson,et al.  Visual Space Perception: A Primer , 1998 .

[60]  Manfred Opper,et al.  Statistical mechanics of generalization , 1998 .

[61]  D. Knill Ideal observer perturbation analysis reveals human strategies for inferring surface orientation from texture , 1998, Vision Research.

[62]  Pascal Mamassian,et al.  Observer biases in the 3D interpretation of line drawings , 1998, Vision Research.

[63]  Tomaso A. Poggio,et al.  A Sparse Representation for Function Approximation , 1998, Neural Computation.

[64]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[65]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[66]  Hagai Attias,et al.  Blind Source Separation and Deconvolution: The Dynamic Component Analysis Algorithm , 1998, Neural Computation.

[67]  P. Perona,et al.  Where is the sun? , 1998, Nature Neuroscience.

[68]  Paul A. Viola,et al.  Texture recognition using a non-parametric multi-scale statistical model , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[69]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[70]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[71]  D. Knill,et al.  Discrimination of planar surface slant from texture: human and ideal observers compared , 1998, Vision Research.

[72]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[73]  David C. Knill,et al.  Surface orientation from texture: ideal observers, generic observers and the information content of texture cues , 1998, Vision Research.

[74]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[75]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[76]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[77]  T. Bonhoeffer,et al.  Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Eckstein The Lower Visual Search Efficiency for Conjunctions Is Due to Noise and not Serial Attentional Processing , 1998 .

[79]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[80]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[81]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..

[82]  E. Adelson,et al.  Slow and Smooth: A Bayesian theory for the combination of local motion signals in human vision , 1998 .

[83]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[84]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[85]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[86]  M. B. Gordon,et al.  PHASE TRANSITIONS IN OPTIMAL UNSUPERVISED LEARNING , 1997, cond-mat/9709274.

[87]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[88]  J. Todd,et al.  The perception of surface curvature from optical motion , 1998, Perception & psychophysics.

[89]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[90]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[91]  Y. Weiss Belief Propagation and Revision in Networks with Loops , 1997 .

[92]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[93]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[94]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[95]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[96]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[98]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[99]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[100]  K. Obermayer,et al.  PHASE TRANSITIONS IN STOCHASTIC SELF-ORGANIZING MAPS , 1997 .

[101]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[102]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[103]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[104]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[105]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[106]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[107]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[108]  Risto Miikkulainen,et al.  Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex , 1997, Neural Computation.

[109]  C. Papageorgiou,et al.  Object and pattern detection in video sequences , 1997 .

[110]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[111]  Yair Weiss,et al.  Interpreting Images by Propagating Bayesian Beliefs , 1996, NIPS.

[112]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[113]  Geoffrey E. Hinton,et al.  Varieties of Helmholtz Machine , 1996, Neural Networks.

[114]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[115]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[116]  T. Sanger,et al.  Probability density estimation for the interpretation of neural population codes. , 1996, Journal of neurophysiology.

[117]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[118]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[119]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[120]  William T. Freeman,et al.  The generic viewpoint assumption in a Bayesian framework , 1996 .

[121]  Frans A. J. Verstraten,et al.  Responses of Complex Cells in Area 17 of the Cat to Bi-vectorial Transparent Motion , 1996, Vision Research.

[122]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[123]  U. Grenander Elements of Pattern Theory , 1996 .

[124]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[125]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[126]  M. Pauline Baker,et al.  Computer Graphics, C Version , 1996 .

[127]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[128]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..

[129]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[130]  B. Ripley Pattern Recognition and Neural Networks , 1996 .

[131]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[132]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[133]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[134]  Opper,et al.  Bounds for predictive errors in the statistical mechanics of supervised learning. , 1995, Physical review letters.

[135]  Wendy L. Braje,et al.  Human efficiency for recognizing 3-D objects in luminance noise , 1995, Vision Research.

[136]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[137]  Andrew Blake,et al.  Two-dimensional constraints on three-dimensional structure from motion tasks , 1995, Vision Research.

[138]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  J. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, SIGGRAPH.

[140]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[141]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[143]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[144]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[145]  J G Daugman,et al.  Demodulation, predictive coding, and spatial vision. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[146]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[147]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  W. Epstein,et al.  Perception of space and motion , 1995 .

[149]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[150]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[151]  E. Bienenstock A model of neocortex , 1995 .

[152]  James E. Cutting,et al.  Chapter 3 – Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth* , 1995 .

[153]  Tobias Bonhoeffer,et al.  Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex , 1994, Nature.

[154]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[155]  Néstor Parga,et al.  Duality Between Learning Machines: A Bridge Between Supervised and Unsupervised Learning , 1994, Neural Computation.

[156]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[157]  J. Nadal,et al.  Optimal unsupervised learning , 1994 .

[158]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  J. Nadal,et al.  Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer Network 5 , 1994 .

[160]  Horace Barlow,et al.  What is the computational goal of the neocortex , 1994 .

[161]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[162]  David J. Heeger,et al.  Model of visual motion sensing , 1994 .

[163]  M. Landy,et al.  A perturbation analysis of depth perception from combinations of texture and motion cues , 1993, Vision Research.

[164]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[165]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[166]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[167]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[168]  Pamela C. Cosman,et al.  Incorporating visual factors into vector quantizers for image compression , 1993 .

[169]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[170]  Teuvo Kohonen,et al.  Physiological interpretationm of the self-organizing map algorithm , 1993 .

[171]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 1993, 1993 (4th) International Conference on Computer Vision.

[172]  Edward H. Adelson,et al.  Recovering reflectance and illumination in a world of painted polyhedra , 1993, 1993 (4th) International Conference on Computer Vision.

[173]  H. Wilson,et al.  Spatial frequency adaptation and contrast gain control , 1993, Vision Research.

[174]  A. Norman Redlich,et al.  Redundancy Reduction as a Strategy for Unsupervised Learning , 1993, Neural Computation.

[175]  J. H. Van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[176]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[177]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[178]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[179]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[180]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[181]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[182]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[183]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[184]  Hugh R. Wilson,et al.  Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity , 1992, Vision Research.

[185]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[186]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[187]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[188]  R. Blake,et al.  The interplay between stereopsis and structure from motion , 1991, Perception & psychophysics.

[189]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[190]  Michael S. Landy,et al.  Psychophysical estimation of the human depth combination rule , 1991, Other Conferences.

[191]  Colin Blakemore,et al.  Statistical limits to image understanding , 1991 .

[192]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[193]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[194]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[195]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[196]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[197]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[198]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[199]  Helge J. Ritter,et al.  Large-scale simulations of self-organizing neural networks on parallel computers: application to biological modelling , 1990, Parallel Comput..

[200]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[201]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[202]  G. Wahba Spline Models for Observational Data , 1990 .

[203]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[204]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[205]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[206]  D. Mackay,et al.  Analysis of Linsker's application of Hebbian rules to linear networks , 1990 .

[207]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[208]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[209]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[210]  T. Wiesel,et al.  Pharmacological analysis of cortical circuitry , 1989, Trends in Neurosciences.

[211]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[212]  Michael S. Landy,et al.  A Statistical Framework for Robust Fusion of Depth Information , 1989, Other Conferences.

[213]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[214]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[215]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[216]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the spatial domain , 1989, Visual Neuroscience.

[217]  M Nawrot,et al.  Neural integration of information specifying structure from stereopsis and motion. , 1989, Science.

[218]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[219]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[220]  H H Bülthoff,et al.  Integration of depth modules: stereo and shading. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[221]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[222]  J. Cutting,et al.  Minimodularity and the perception of layout. , 1988, Journal of experimental psychology. General.

[223]  W. Richards Natural Computation , 1988 .

[224]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[225]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[226]  Tomaso Poggio,et al.  Synthesizing a color algorithm from examples , 1988 .

[227]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[228]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[229]  R Linsker,et al.  From basic network principles to neural architecture: emergence of orientation columns. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[230]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[231]  Terrence J. Sejnowski,et al.  Open questions about computation in cerebral cortex , 1986 .

[232]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[233]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[234]  Ken Nakayama,et al.  Biological image motion processing: A review , 1985, Vision Research.

[235]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[236]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[237]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Comput. Vis. Graph. Image Process..

[238]  D. Kersten Spatial summation in visual noise , 1984, Vision Research.

[239]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[240]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[241]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[242]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[243]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[244]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[245]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[246]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[247]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[248]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[249]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[250]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[251]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[252]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[253]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[254]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[255]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[256]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[257]  R. F. Hess,et al.  The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification , 1977, Vision Research.

[258]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[259]  M. B. Clowes,et al.  On Seeing Things , 1971, Artif. Intell..

[260]  Thomas S. Huang,et al.  Image processing , 1971 .

[261]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[262]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[263]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[264]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[265]  H. Barlow,et al.  A method of determining the overall quantum efficiency of visual discriminations , 1962, The Journal of physiology.

[266]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[267]  O. L. Zangwill,et al.  Current problems in animal behaviour , 1962 .

[268]  D. Armstrong,et al.  Perception and the Physical World , 1961 .

[269]  M. C. GOODALL,et al.  Performance of a Stochastic Net , 1960, Nature.

[270]  O. Schade Optical and photoelectric analog of the eye. , 1956, Journal of the Optical Society of America.

[271]  D. Mackay The Epistemological Problem for Automata , 1956 .

[272]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[273]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .