Chapter 11 Sensors and Information Spaces

[1]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[2]  Y. Ho,et al.  Team decision theory and information structures in optimal control problems: Part II , 1971, CDC 1971.

[3]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[4]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[5]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[6]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[7]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[8]  R. Bertram,et al.  Stochastic Systems , 2008, Control Theory for Physicists.

[9]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[10]  Lyle A. McGeoch,et al.  Competitive algorithms for on-line problems , 1988, STOC '88.

[11]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[12]  Kenneth Y. Goldberg,et al.  Bayesian grasping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[13]  Ken Goldberg,et al.  Stochastic plans for robotic manipulation , 1991 .

[14]  Bruce Randall Donald,et al.  Sensor interpretation and task-directed planning using perceptual equivalence classes , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[15]  Steven M. LaValle,et al.  An objective-based stochastic framework for manipulation planning , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[16]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[17]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[18]  Jérôme Barraquand,et al.  Motion planning with uncertainty: the information space approach , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[20]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[21]  Steven M. LaValle,et al.  An Objective-Based Framework for Motion Planning under Sensing and Control Uncertainties , 1998, Int. J. Robotics Res..

[22]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[23]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[24]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[27]  Michael A. Erdmann,et al.  Randomization for robot tasks: Using dynamic programming in the space of knowledge states , 1993, Algorithmica.

[28]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[29]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .