On-Manifold Preintegration for Real-Time Visual--Inertial Odometry

Current approaches for visual--inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time; this problem is further emphasized by the fact that inertial measurements come at high rate, hence, leading to the fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a preintegration theory that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the maximum a posteriori state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a posteriori bias correction in analytic form. The second contribution is to show that the preintegrated inertial measurement unit model can be seamlessly integrated into a visual--inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a structureless model for visual measurements, which avoids optimizing over the 3-D points, further accelerating the computation. We perform an extensive evaluation of our monocular VIO pipeline on real and simulated datasets. The results confirm that our modeling effort leads to an accurate state estimation in real time, outperforming state-of-the-art approaches.

[1]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[2]  Carlo Tomasi,et al.  Representation issues in the ML estimation of camera motion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Gaurav S. Sukhatme,et al.  Sliding window filter with application to planetary landing , 2010, J. Field Robotics.

[4]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Stergios I. Roumeliotis,et al.  A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices , 2015, Robotics: Science and Systems.

[6]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[7]  G. Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 2 , 2012 .

[8]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Agostino Martinelli,et al.  Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination , 2012, IEEE Transactions on Robotics.

[10]  Roland Siegwart,et al.  A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM , 2014, ICRA 2014.

[11]  Stergios I. Roumeliotis,et al.  A dual-layer estimator architecture for long-term localization , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[12]  Roland Siegwart,et al.  Keyframe-based Visual-Inertial SLAM using Nonlinear Optimization , 2013, RSS 2013.

[13]  Hauke Strasdat,et al.  Real-time monocular SLAM: Why filter? , 2010, 2010 IEEE International Conference on Robotics and Automation.

[14]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[15]  Dimitrios G. Kottas,et al.  Camera-IMU-based localization: Observability analysis and consistency improvement , 2014, Int. J. Robotics Res..

[16]  Frank Dellaert,et al.  Square Root SAM , 2005, Robotics: Science and Systems.

[17]  J.L. Crassidis,et al.  Sigma-point Kalman filtering for integrated GPS and inertial navigation , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Frank Chongwoo Park,et al.  Robot sensor calibration: solving AX=XB on the Euclidean group , 1994, IEEE Trans. Robotics Autom..

[19]  Frank Dellaert,et al.  The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping , 2010 .

[20]  Gregory S. Chirikjian,et al.  Nonparametric Second-order Theory of Error Propagation on Motion Groups , 2008, Int. J. Robotics Res..

[21]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Jonghoon Park,et al.  Geometric integration on Euclidean group with application to articulated multibody systems , 2005, IEEE Transactions on Robotics.

[23]  Joachim Hornegger,et al.  Statistical modeling of relations for 3-D object recognition , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  G. Chirikjian Stochastic models, information theory, and lie groups , 2012 .

[25]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[26]  Manuela Herman,et al.  Aided Navigation Gps With High Rate Sensors , 2016 .

[27]  Frank Dellaert,et al.  Information fusion in navigation systems via factor graph based incremental smoothing , 2013, Robotics Auton. Syst..

[28]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[29]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[30]  Dimitrios G. Kottas,et al.  On the Consistency of Vision-Aided Inertial Navigation , 2012, ISER.

[31]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[32]  Frank Dellaert,et al.  Factor graph based incremental smoothing in inertial navigation systems , 2012, 2012 15th International Conference on Information Fusion.

[33]  Stergios I. Roumeliotis,et al.  C-KLAM: Constrained keyframe-based localization and mapping , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Salah Sukkarieh,et al.  Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions , 2012, IEEE Transactions on Robotics.

[35]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[36]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[37]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[38]  Stefano Soatto,et al.  Observability, identifiability and sensitivity of vision-aided inertial navigation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[40]  Stergios I. Roumeliotis,et al.  An observability-constrained sliding window filter for SLAM , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[42]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[43]  Stefano Soatto,et al.  Visual-inertial navigation, mapping and localization: A scalable real-time causal approach , 2011, Int. J. Robotics Res..

[44]  Anastasios I. Mourikis,et al.  Online temporal calibration for camera–IMU systems: Theory and algorithms , 2014, Int. J. Robotics Res..

[45]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[46]  Agostino Martinelli,et al.  Observability Properties and Deterministic Algorithms in Visual-Inertial Structure from Motion , 2013, Found. Trends Robotics.

[47]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[48]  Stefano Soatto,et al.  Robust inference for visual-inertial sensor fusion , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[49]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[50]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[51]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[52]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[53]  Gregory S. Chirikjian,et al.  Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.

[54]  S. Shen Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles , 2014 .

[55]  John L. Crassidis,et al.  Geometric Integration of Quaternions , 2012 .

[56]  Frank Dellaert,et al.  Incremental light bundle adjustment for robotics navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Paul Timothy Furgale,et al.  Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems , 2014, IEEE Transactions on Robotics.

[58]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[59]  Camillo J. Taylor,et al.  Camera trajectory estimation using inertial sensor measurements and structure from motion results , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[60]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[61]  Roland Siegwart,et al.  Keyframe-Based Visual-Inertial SLAM using Nonlinear Optimization , 2013, Robotics: Science and Systems.

[62]  Matthew Johnson-Roberson,et al.  Airborne smoothing and mapping using vision and inertial sensors , 2009, 2009 IEEE International Conference on Robotics and Automation.

[63]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[64]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[65]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[66]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[67]  Stergios I. Roumeliotis,et al.  A First-Estimates Jacobian EKF for Improving SLAM Consistency , 2009, ISER.

[68]  Anastasios I. Mourikis,et al.  Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis , 2011, 2011 IEEE International Conference on Robotics and Automation.

[69]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[70]  David W. Murray,et al.  Parallel Tracking and Mapping on a camera phone , 2009, 2009 8th IEEE International Symposium on Mixed and Augmented Reality.

[71]  Sanjiv Singh,et al.  Motion Estimation from Image and Inertial Measurements , 2004, Int. J. Robotics Res..

[72]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Frank Dellaert,et al.  Eliminating conditionally independent sets in factor graphs: A unifying perspective based on smart factors , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[74]  Gabe Sibley,et al.  A Spline-Based Trajectory Representation for Sensor Fusion and Rolling Shutter Cameras , 2015, International Journal of Computer Vision.

[75]  Gabe Sibley,et al.  Asynchronous Adaptive Conditioning for Visual-Inertial SLAM , 2014, ISER.