Biologically inspired neural network approaches to real-time collision-free robot motion planning

In this chapter, a framework, based on biologically inspired neural networks, is proposed for real-time collision-free robot motion planning in a nonstationary environment. Each neuron in the topologically organized neural network is characterized by a shunting equation. The developed algorithms can be applied to point mobile robots, manipulation robots, car-like mobile robots, and multi-robot systems. The real-time optimal robot motion is planned through the dynamic neural activity landscape without explicitly searching over the free workspace or the collision paths, without any prior knowledge of the dynamic environment, without any learning procedures, and without any local collision checking procedures at each step of robot movement. Therefore the proposed algorithms are computationally efficient. The computational complexity linearly depends on the neural network size. The system stability is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approaches are demonstrated by simulation and comparison studies.

[1]  Max Q.-H. Meng,et al.  Real-time Collision-free Path Planning of Robot Manipulators using Neural Network Approaches , 2000, Auton. Robots.

[2]  Chelsea C. White,et al.  A heuristic search algorithm for path determination with learning , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[3]  C.C.A.M. Gielen,et al.  Population coding in a neural net for trajectory formation , 1994 .

[4]  Kimmo Pulakka,et al.  Rough level path planning method for a robot using SOFM neural network , 1998, Robotica.

[5]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[6]  Maja J. Mataric,et al.  Reinforcement Learning in the Multi-Robot Domain , 1997, Auton. Robots.

[7]  Jun Wang Primal and dual neural networks for shortest-path routing , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[8]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[9]  T. Naniwa,et al.  A feasible motion-planning algorithm for a mobile robot based on a quadtree representation , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[11]  J. Duffy,et al.  Two dimensional collision-free path planning using linear parametric curve , 1997 .

[12]  B. V. K. Vijaya Kumar,et al.  Path planners based on the wave expansion neural network , 1999, Robotics Auton. Syst..

[13]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[14]  Bogdan Kreczmer Path planning system for car-like robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[15]  Juan López Coronado,et al.  An unsupervised neural network for low-level control of a wheeled mobile robot: noise resistance, stability, and hardware implementation , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[16]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[17]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Alexander Zelinsky,et al.  Using Path Transforms to Guide the Search for Findpath in 2D , 1994, Int. J. Robotics Res..

[19]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[20]  Maria L. Gini,et al.  Robot navigation in a known environment with unknown moving obstacles , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[21]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[22]  P. Muraca,et al.  Cooperative neural field for the path planning of a robot arm , 1996, J. Intell. Robotic Syst..

[23]  Max Q.-H. Meng,et al.  An efficient neural network model for path planning of car-like robots in dynamic environment , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[24]  S. Grossberg Studies of mind and brain : neural principles of learning, perception, development, cognition, and motor control , 1982 .

[26]  Max Q.-H. Meng,et al.  An efficient neural network method for real-time motion planning with safety consideration , 2000, Robotics Auton. Syst..

[27]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[28]  Stan C. A. M. Gielen,et al.  Neural Network Dynamics for Path Planning and Obstacle Avoidance , 1995, Neural Networks.

[29]  Amine Chohra,et al.  Neural Navigation Approach for Intelligent Autonomous Vehicles (IAV) in Partially Structured Environments , 1998, Applied Intelligence.

[30]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[31]  Max Q.-H. Meng,et al.  A biological inspired neural network approach to real-time collision-free motion planning of a nonholonomic car-like robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[32]  Thierry Fraichard,et al.  Path planning with uncertainty for car-like robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[33]  Tien D. Bui,et al.  Robot Path Planning Using Fluid Model , 1998, J. Intell. Robotic Syst..

[34]  Carme Torras,et al.  2D Path Planning: A Configuration Space Heuristic Approach , 1990, Int. J. Robotics Res..

[35]  Daniel Bullock,et al.  Chapter 11 Vite and Flete: Neural Modules for Trajectory Formation and Postural Control , 1989 .

[36]  Klaus Schulten,et al.  Topology-conserving maps for learning visuo-motor-coordination , 1989, Neural Networks.

[37]  Andreas C. Nearchou,et al.  Path planning of a mobile robot using genetic heuristics , 1998, Robotica.

[38]  S. Meeran,et al.  Optimum path planning using convex hull and local search heuristic algorithms , 1997 .

[39]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..

[40]  Max Q.-H. Meng,et al.  Neural network approaches to dynamic collision-free trajectory generation , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[41]  Leszek Podsedkowski Path planner for nonholonomic mobile robot with fast replanning procedure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[42]  Yoshikazu Arai,et al.  Multilayered reinforcement learning for complicated collision avoidance problems , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[43]  S. Gagné,et al.  Neural models for sustained and ON-OFF units of insect lamina , 1990, Biological Cybernetics.

[44]  Yong K. Hwang,et al.  SANDROS: a dynamic graph search algorithm for motion planning , 1998, IEEE Trans. Robotics Autom..

[45]  Diaz de Leon S Jl,et al.  Automatic path planning for a mobile robot among obstacles of arbitrary shape. , 1998 .

[46]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[47]  Juan López Coronado,et al.  A real-time, unsupervised neural network for the low-level control of a mobile robot in a nonstationary environment , 1995, Neural Networks.

[48]  Ronald C. Arkin,et al.  Intelligent Robotic Systems , 1995, IEEE Expert.

[49]  Kai-Tai Song,et al.  Environment prediction for a mobile robot in a dynamic environment , 1997, IEEE Trans. Robotics Autom..

[50]  Haluk Ögmen,et al.  Neural network architectures for motion perception and elementary motion detection in the fly visual system , 1990, Neural Networks.

[51]  Stephen Grossberg,et al.  Studies of mind and brain , 1982 .

[52]  Waugh,et al.  Associative memory in an analog iterated-map neural network. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[53]  Hyung Suck Cho,et al.  A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning , 1995, IEEE Trans. Syst. Man Cybern..

[54]  Youssef Saab,et al.  Shortest path planning on topographical maps , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[55]  Max Q.-H. Meng,et al.  An efficient neural network approach to dynamic robot motion planning , 2000, Neural Networks.

[56]  L. Wyard-Scott,et al.  A potential maze solving algorithm for a micromouse robot , 1995, IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing. Proceedings.

[57]  Luca Maria Gambardella,et al.  Robot Motion Planning Integrating Planning Strategies and Learning Methods , 1994, AIPS.

[58]  Xianyi Yang Neural network approaches to real-time motion planning and control of robotic systems , 1999 .

[59]  Gamini Dissanayake,et al.  A neural network-based method for time-optimal trajectory planning , 1998, Robotica.

[60]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[61]  K. S. Al-Sultan,et al.  A new potential field-based algorithm for path planning , 1996, J. Intell. Robotic Syst..

[62]  Haluk Ogmen,et al.  A neural theory of retino-cortical dynamics , 1993 .

[63]  B. V. K. Vijaya Kumar,et al.  Path Planning for Autonomous Robots Using Neural Networks , 1997 .

[64]  G. Oriolo,et al.  Fuzzy Maps: A New Tool for Mobile Robot Perception and Planning , 1997 .

[65]  Shangxian Peng,et al.  Neural network and fuzzy logic techniques based collision avoidance for a mobile robot , 1997, Robotica.

[66]  E. Gilbert,et al.  Robot path planning with penetration growth distance , 1998 .

[67]  Rajesh P. N. Rao Reinforcement Learning: An Introduction; R.S. Sutton, A.G. Barto (Eds.); MIT Press, Cambridge, MA, 1998, 380 pages, ISBN 0-262-19398-1, $42.00 , 2000 .

[68]  Stan C. A. M. Gielen,et al.  A biologically inspired neural net for trajectory formation and obstacle avoidance , 1996, Biological Cybernetics.