Visual object understanding

Visual object understanding includes processes at the nexus of visual perception and visual cognition. A traditional approach separates questions that are more associated with perception — how are objects represented by high-level vision — from questions that are more associated with cognition — how are objects identified, categorized and remembered. However, to understand the bridge between perception and cognition, it is fruitful to abandon any sharp distinction between perceptual and cognitive aspects of visual object understanding. We provide a selective review of research from both the Object Recognition and Perceptual Categorization literatures, highlighting relevant behavioural, neuropsychological, neurophysiological and theoretical research into the representations and processes that underlie visual object understanding in humans and primates.

[1]  R. Shepard,et al.  Learning and memorization of classifications. , 1961 .

[2]  M. Posner,et al.  On the genesis of abstract ideas. , 1968, Journal of experimental psychology.

[3]  Stephen K. Reed,et al.  Pattern recognition and categorization , 1972 .

[4]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[5]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[6]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[7]  Donald Homa,et al.  Abstraction of ill-defined form. , 1978 .

[8]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[9]  B. Bergum,et al.  Attention and performance IX , 1982 .

[10]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[11]  S. Pinker,et al.  Visual cognition : An introduction * , 1989 .

[12]  R. Nosofsky American Psychological Association, Inc. Choice, Similarity, and the Context Theory of Classification , 2022 .

[13]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[14]  James L. McClelland,et al.  Distributed memory and the representation of general and specific information. , 1985, Journal of experimental psychology. General.

[15]  Douglas L. Hintzman,et al.  "Schema Abstraction" in a Multiple-Trace Memory Model , 1986 .

[16]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[17]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986 .

[18]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[19]  Dennis C. Hay,et al.  Configural information in face recognition , 1987 .

[20]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[21]  A. Young,et al.  Configurational Information in Face Perception , 1987, Perception.

[22]  G. Logan Toward an instance theory of automatization. , 1988 .

[23]  T. Shallice From Neuropsychology to Mental Structure: Converging Operations: Specific Syndromes and Evidence from Normal Subjects , 1988 .

[24]  R. Nosofsky Exemplar-Based Accounts of Relations Between Classification, Recognition, and Typicality , 1988 .

[25]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[26]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[27]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[28]  D. L. Hintzman Human learning and memory: connections and dissociations. , 1990, Annual review of psychology.

[29]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[30]  Mark H. Johnson,et al.  CONSPEC and CONLERN: a two-process theory of infant face recognition. , 1991, Psychological review.

[31]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[33]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[34]  J. Kruschke,et al.  ALCOVE: an exemplar-based connectionist model of category learning. , 1992, Psychological review.

[35]  H H Bülthoff,et al.  Psychophysical support for a two-dimensional view interpolation theory of object recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Squire,et al.  The learning of categories: parallel brain systems for item memory and category knowledge. , 1993, Science.

[37]  Math Candel Multidimensional models of perception and cognition , 1993 .

[38]  I. Biederman,et al.  Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. , 1993 .

[39]  R. Nosofsky,et al.  Comparing modes of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961) , 1994, Memory & cognition.

[40]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[41]  Robert L. Goldstone Influences of categorization on perceptual discrimination. , 1994, Journal of experimental psychology. General.

[42]  R. Nosofsky,et al.  Rule-plus-exception model of classification learning. , 1994, Psychological review.

[43]  A. Damasio Descartes' error: emotion, reason, and the human brain. avon books , 1994 .

[44]  M J Tarr,et al.  Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). , 1995, Journal of experimental psychology. Human perception and performance.

[45]  H H Bülthoff,et al.  How are three-dimensional objects represented in the brain? , 1994, Cerebral cortex.

[46]  Martha J. Farah,et al.  Face perception and within-category discrimination in prosopagnosia , 1995, Neuropsychologia.

[47]  R. Joynt Descartes' Error: Emotion, Reason, and the Human Brain , 1995 .

[48]  D. Plaut Double dissociation without modularity: evidence from connectionist neuropsychology. , 1995, Journal of clinical and experimental neuropsychology.

[49]  M. Tarr Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects , 1995, Psychonomic bulletin & review.

[50]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. Squire,et al.  Learning about categories in the absence of memory. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Humphreys,et al.  An interactive activation approach to object processing: effects of structural similarity, name frequency, and task in normality and pathology. , 1995, Memory.

[53]  R M Nosofsky,et al.  Recognition memory for exceptions to the category rule. , 1995, Journal of experimental psychology. Learning, memory, and cognition.

[54]  N. Logothetis,et al.  Psychophysical and physiological evidence for viewer-centered object representations in the primate. , 1995, Cerebral cortex.

[55]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[56]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[57]  S. Sloman The empirical case for two systems of reasoning. , 1996 .

[58]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[59]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[60]  Kathy E. Johnson,et al.  Effects of varying levels of expertise on the basic level of categorization. , 1997, Journal of experimental psychology. General.

[61]  M. Tarr,et al.  Levels of categorization in visual recognition studied using functional magnetic resonance imaging , 1997, Current Biology.

[62]  S. Edelman,et al.  Computational Theories of Object Recognition Edelman -computation and Object Recognition Ii Box 1. Structural Descriptions ~ 7~ Recognition by Components Varieties of Alignment Multidimensional Histograms Approximation in Feature Space , 2022 .

[63]  T. Palmeri Exemplar similarity and the development of automaticity. , 1997, Journal of experimental psychology. Learning, memory, and cognition.

[64]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[65]  R. Nosofsky,et al.  An exemplar-based random walk model of speeded classification. , 1997, Psychological review.

[66]  Gregory Ashby,et al.  A neuropsychological theory of multiple systems in category learning. , 1998, Psychological review.

[67]  Robert L. Goldstone,et al.  The development of features in object concepts , 1998, Behavioral and Brain Sciences.

[68]  Edward E. Smith,et al.  Alternative strategies of categorization , 1998, Cognition.

[69]  N. Chater,et al.  Rational models of cognition , 1998 .

[70]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[71]  Gordon E. Legge,et al.  The viewpoint complexity of an object-recognition task , 1998, Vision Research.

[72]  Robert L. Goldstone,et al.  Reuniting perception and conception , 1998, Cognition.

[73]  M. Farah,et al.  What is "special" about face perception? , 1998, Psychological review.

[74]  D. Perrett,et al.  Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations , 1998, Cognition.

[75]  R. Nosofsky,et al.  A rule-plus-exception model for classifying objects in continuous-dimension spaces , 1998 .

[76]  Isabel Gauthier,et al.  Three-dimensional object recognition is viewpoint dependent , 1998, Nature Neuroscience.

[77]  Robert M. Nosofsky,et al.  Dissociations Between Categorization and Recognition in Amnesic and Normal Individuals: An Exemplar-Based Interpretation , 1998 .

[78]  John E. Hummel,et al.  Two Roles for Attention in Shape Perception: A Structural Description Model of Visual Scrutiny , 1998 .

[79]  L. Squire,et al.  Episodic memory, semantic memory, and amnesia , 1998, Hippocampus.

[80]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[81]  J. Kruschke,et al.  Rules and exemplars in category learning. , 1998, Journal of experimental psychology. General.

[82]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[83]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[84]  Philippe G Schyns,et al.  Diagnostic recognition: task constraints, object information, and their interactions , 1998, Cognition.

[85]  F. Ashby,et al.  On the nature of implicit categorization , 1999, Psychonomic bulletin & review.

[86]  Jonathan K. Foster,et al.  Memory : systems, process, or function? , 1999 .

[87]  Randy L. Buckner,et al.  Components of Processing , 1999 .

[88]  M. Kiefer,et al.  Cognitive Neuroscience: Tracking the time course of object categorization using event-related potentials , 1999 .

[89]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[90]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[91]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[92]  Garrison W. Cottrell,et al.  Organization of face and object recognition in modular neural network models , 1999, Neural Networks.

[93]  L. Deouell,et al.  Cognitive Neuroscience: Selective visual streaming in face recognition: evidence from developmental prosopagnosia , 1999 .

[94]  I. Biederman,et al.  Subordinate-level object classification reexamined , 1999, Psychological research.

[95]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[96]  C. J. Marsolek Dissociable Neural Subsystems Underlie Abstract and Specific Object Recognition , 1999 .

[97]  Alan C. Evans,et al.  The Neural Substrate of Picture Naming , 1999, Journal of Cognitive Neuroscience.

[98]  T. Palmeri,et al.  Learning About Categories in the Absence of Training: Profound Amnesia and the Relationship Between Perceptual Categorization and Recognition Memory , 1999 .

[99]  Isabel Gauthier,et al.  What constrains the organization of the ventral temporal cortex? , 2000, Trends in Cognitive Sciences.

[100]  Robert L. Goldstone Unitization during category learning. , 2000, Journal of experimental psychology. Human perception and performance.

[101]  J. D. Smith,et al.  Thirty categorization results in search of a model. , 2000, Journal of experimental psychology. Learning, memory, and cognition.

[102]  E. Rolls,et al.  Memory systems in the brain. , 2000, Annual review of psychology.

[103]  W. Hayward,et al.  Viewpoint Dependence and Object Discriminability , 2000, Psychological science.

[104]  N. Chater,et al.  Rational models of cognition , 1998 .

[105]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[106]  Narendra Ahuja,et al.  Learning to recognize objects , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[107]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[108]  Bosco S. Tjan,et al.  Adaptive Object Representation with Hierarchically-Distributed Memory Sites , 2000, NIPS.

[109]  Charles Jennings,et al.  Computational approaches to brain function , 2000, Nature Neuroscience.

[110]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[111]  K. Lamberts Information-accumulation theory of speeded categorization. , 2000, Psychological review.

[112]  Mark K. Johansen,et al.  Exemplar-based accounts of "multiple-system" phenomena in perceptual categorization. , 2000, Psychonomic bulletin & review.

[113]  Ashby,et al.  A Stochastic Version of General Recognition Theory. , 2000, Journal of mathematical psychology.

[114]  M. Farah,et al.  EARLY COMMITMENT OF NEURAL SUBSTRATES FOR FACE RECOGNITION , 2000, Cognitive neuropsychology.

[115]  R. Nosofsky,et al.  A single-system interpretation of dissociations between recognition and categorization in a task involving object-like stimuli , 2001, Cognitive, affective & behavioral neuroscience.

[116]  F. Ashby,et al.  The effects of concurrent task interference on category learning: Evidence for multiple category learning systems , 2001, Psychonomic bulletin & review.

[117]  David R. Shanks,et al.  Amnesia and the Declarative/Nondeclarative Distinction: A Recurrent Network Model of Classification, Recognition, and Repetition Priming , 2001, Journal of Cognitive Neuroscience.

[118]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[119]  J. Tanaka The entry point of face recognition: evidence for face expertise. , 2001, Journal of experimental psychology. General.

[120]  N. Kanwisher,et al.  The Human Body , 2001 .

[121]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[122]  L. Brooks,et al.  Specializing the operation of an explicit rule , 1991 .

[123]  M. Gluck,et al.  Interactive memory systems in the human brain , 2001, Nature.

[124]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[125]  J Jonides,et al.  PET evidence for multiple strategies of categorization , 2001, Cognitive, affective & behavioral neuroscience.

[126]  J. Tanaka,et al.  A Neural Basis for Expert Object Recognition , 2001, Psychological science.

[127]  I. Biederman,et al.  Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than to Metric Shape Differences , 2001, Journal of Cognitive Neuroscience.

[128]  Gregory Ashby,et al.  Suboptimality in human categorization and identification. , 2001, Journal of experimental psychology. General.

[129]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[130]  Brian J Stankiewicz,et al.  Empirical evidence for independent dimensions in the visual representation of three-dimensional shape. , 2002, Journal of experimental psychology. Human perception and performance.

[131]  F. Gregory Ashby,et al.  Single versus multiple systems of category learning: Reply to Nosofsky and Kruschke (2002) , 2002 .

[132]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[133]  Michael J Wenger,et al.  A decisional component of holistic encoding. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[134]  J. Kruschke,et al.  Rule-based extrapolation in perceptual categorization , 2002, Psychonomic bulletin & review.

[135]  Ravi S. Menon,et al.  Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams , 2002, Neuron.

[136]  Carlo Umiltà,et al.  Newborns' preference for faces: what is crucial? , 2002, Developmental psychology.

[137]  S-W Lee,et al.  Biologically Motivated Computer Vision , 2000, Lecture Notes in Computer Science.

[138]  D. Maurer,et al.  The many faces of configural processing , 2002, Trends in Cognitive Sciences.

[139]  Mark K. Johansen,et al.  Are there representational shifts during category learning? , 2002, Cognitive Psychology.

[140]  M. Tarr,et al.  Expertise Training with Novel Objects Leads to Left-Lateralized Facelike Electrophysiological Responses , 2002, Psychological science.

[141]  John K Kruschke,et al.  Single-system models and interference in category learning: Commentary on Waldron and Ashby (2001) , 2002, Psychonomic bulletin & review.

[142]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[143]  D. Foster,et al.  Recognizing novel three–dimensional objects by summing signals from parts and views , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[144]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[145]  N. Sigala,et al.  Visual Categorization and Object Representation in Monkeys and Humans , 2002, Journal of Cognitive Neuroscience.

[146]  Isabel Gauthier,et al.  BOLD Activity during Mental Rotation and Viewpoint-Dependent Object Recognition , 2002, Neuron.

[147]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[148]  M. Tarr,et al.  Unraveling mechanisms for expert object recognition: bridging brain activity and behavior. , 2002, Journal of experimental psychology. Human perception and performance.

[149]  J. D. Smith,et al.  Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[150]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[151]  Y. Rosseel Mixture models of categorization , 2002 .

[152]  M. Riesenhuber,et al.  A Detailed Look at Scale and Translation Invariance in a Hierarchical Neural Model of Visual Object Recognition , 2002 .

[153]  I. Gauthier,et al.  Visual Neurons: Categorization-Based Selectivity , 2002, Current Biology.

[154]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[155]  Tom A Schweizer,et al.  The role of premorbid expertise on object identification in a patient with category-specific visual agnosia , 2002, Cognitive neuropsychology.

[156]  Seong-Whan Lee,et al.  Biologically Motivated Computer Vision , 2002, Lecture Notes in Computer Science.

[157]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[158]  R. Salmelin,et al.  Adult Brain Plasticity Elicited by Anomia Treatment , 2003, Journal of Cognitive Neuroscience.

[159]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[160]  Zaki Safa R.,et al.  Categorization and recognition performance of a memory-impaired group: Evidence for single-system models , 2003, Journal of the International Neuropsychological Society.

[161]  Isabel Gauthier,et al.  Auditory and Action Semantic Features Activate Sensory-Specific Perceptual Brain Regions , 2003, Current Biology.

[162]  Johan Wagemans,et al.  The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. , 2003, Journal of experimental psychology. General.

[163]  I. Gauthier,et al.  Perceptual interference supports a non-modular account of face processing , 2003, Nature Neuroscience.

[164]  G. Rousselet,et al.  Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. , 2003, Journal of vision.

[165]  Robert M Nosofsky,et al.  Categorization and recognition performance of a memory-impaired group: Evidence for single-system models , 2003, Journal of the International Neuropsychological Society.

[166]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[167]  Stephen M. Kosslyn,et al.  Do separate processes identify objects as exemplars versus members of basic-level categories? Evidence from hemispheric specialization , 2003, Brain and Cognition.

[168]  Michael L. Peterson,et al.  Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes (335-355) , 2006 .

[169]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[170]  Isabel Gauthier,et al.  THE INFLUENCE OF CONCEPTUAL KNOWLEDGE ON VISUAL DISCRIMINATION , 2003, Cognitive neuropsychology.

[171]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[172]  J. Schall On building a bridge between brain and behavior. , 2004, Annual review of psychology.

[173]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[174]  I. Gauthier,et al.  Brain areas engaged during visual judgments by involuntary access to novel semantic information , 2004, Vision Research.

[175]  J. Townsend,et al.  Computational, Geometric, and Process Perspectives on Facial Cognition : Contexts and Challenges , 2005 .