Obstacle Avoidance Using Circular Paths

This paper develops a method of obstacle avoidance for fixed-wing miniature air vehicles (MAV) using a series of circular oscillating paths and a single point laser ranger. The laser ranger is a low power, light-weight device used to report the distance to an object in a single direction of the body frame of a MAV. The oscillating paths allow the laser ranger to scan for obstacles and possible escape paths for the MAV in the case of obstacle detection. The circular paths are generated along waypoint paths and transition between waypoint paths without loss of scanning capabilities. Obstacle avoidance is guaranteed.

[1]  Timothy W. McLain,et al.  Static and Dynamic Obstacle Avoidance for Miniature Air Vehicles , 2005 .

[2]  T. Kanade,et al.  Real-time and 3D vision for autonomous small and micro air vehicles , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[3]  T. Kanade,et al.  Real-Time and 3 D Vision for Autonomous Small and Micro Air Vehicles , .

[4]  Bruno Sinopoli,et al.  Vision based navigation for an unmanned aerial vehicle , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Julian R. Raxworthy,et al.  Static and dynamic , 2006 .

[6]  S. Shankar Sastry,et al.  A vision system for landing an unmanned aerial vehicle , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[8]  David Hsu,et al.  Narrow passage sampling for probabilistic roadmap planning , 2005, IEEE Transactions on Robotics.

[9]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).