Optimization-based interactive motion synthesis

We present a physics-based approach to synthesizing motion of a virtual character in a dynamically varying environment. Our approach views the motion of a responsive virtual character as a sequence of solutions to the constrained optimization problem formulated at every time step. This framework allows the programmer to specify active control strategies using intuitive kinematic goals, significantly reducing the engineering effort entailed in active body control. Our optimization framework can incorporate changes in the character's surroundings through a synthetic visual sensory system and create significantly different motions in response to varying environmental stimuli. Our results show that our approach is general enough to encompass a wide variety of highly interactive motions.

[1]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[2]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[3]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[4]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[5]  Taku Komura,et al.  Stepping motion for a human-like character to maintain balance against large perturbations , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Victor B. Zordan,et al.  Anticipation from example , 2007, VRST '07.

[7]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[8]  Jovan Popovic,et al.  Adaptation of performed ballistic motion , 2005, TOGS.

[9]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[10]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[11]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[13]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[14]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[15]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[16]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[17]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[18]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[19]  A. James Stewart,et al.  Beyond keyframing: an algorithmic approach to animation , 1992 .

[20]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .

[21]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[22]  Victor B. Zordan,et al.  Psychologically Inspired Anticipation and Dynamic Response for Impacts to the Head and Upper Body , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Oussama Khatib,et al.  A whole-body control framework for humanoids operating in human environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[25]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[26]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[27]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[28]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[29]  D. B. Lockhart,et al.  Optimal sensorimotor transformations for balance , 2007, Nature Neuroscience.

[30]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[31]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[32]  C. Karen Liu,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Synthesis of Interactive Hand Manipulation , 2022 .

[33]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[34]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[35]  Jessica K. Hodgins,et al.  Tracking and modifying human motion with dynamic simulation , 1999, SIGGRAPH '99.

[36]  Jessica K. Hodgins,et al.  Tracking and Modifying Upper-body Human Motion Data with Dynamic Simulation , 1999, Computer Animation and Simulation.

[37]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[38]  Michael F. Cohen,et al.  Controlling dynamic simulation with kinematic constraints , 1987, SIGGRAPH.

[39]  Jovan Popovic,et al.  Interactive animation of dynamic manipulation , 2006, SCA '06.

[40]  Michiel van de Panne,et al.  Synthesis of Controllers for Stylized Planar Bipedal Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[41]  Choh Hao Li β-endorphin , 1982, Cell.

[42]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..