Dynamic hebbian learning in adaptive frequency oscillators

[1]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[2]  Sethu Vijayakumar,et al.  Adaptive Optimal Control for Redundantly Actuated Arms , 2008, SAB.

[3]  John Hallam,et al.  From Animals to Animats 10 , 2008 .

[4]  Ludovic Righetti,et al.  A Dynamical Systems Approach to Learning: A Frequency-Adaptive Hopper Robot , 2005, ECAL.

[5]  A. Ijspeert,et al.  From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators , 2005 .

[6]  Ying-Cheng Lai,et al.  Oscillatory associative memory network with perfect retrieval , 2004 .

[7]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[8]  J. J. Collins,et al.  Hard-wired central pattern generators for quadrupedal locomotion , 1994, Biological Cybernetics.

[9]  J. J. Collins,et al.  Hexapodal gaits and coupled nonlinear oscillator models , 1993, Biological Cybernetics.

[10]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[11]  Aude Billard,et al.  A Simple, Adaptive Locomotion Toy-System , 2004 .

[12]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[13]  M. Chial,et al.  in simple , 2003 .

[14]  Douglas Eck Finding downbeats with a relaxation oscillator , 2002, Psychological research.

[15]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[16]  F. Hoppensteadt,et al.  Oscillatory model of novelty detection , 2001, Network.

[17]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[18]  J Nishii,et al.  Learning model for coupled neural oscillators. , 1999, Network.

[19]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[20]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[21]  R. Spigler,et al.  Adaptive Frequency Model for Phase-Frequency Synchronization in Large Populations of Globally Coupled Nonlinear Oscillators , 1998 .

[22]  Ian Stewart,et al.  A modular network for legged locomotion , 1998 .

[23]  Jun Nishii,et al.  A learning model for oscillatory networks , 1998, Neural Networks.

[24]  D. Sept,et al.  Orthogonal trajectories and analytical solutions of the van der Pol equation without forcing , 1998 .

[25]  Stewart W. Wilson,et al.  From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior , 1997 .

[26]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[27]  John F. Kolen,et al.  Resonance and the Perception of Musical Meter , 1994, Connect. Sci..

[28]  S. Strogatz,et al.  Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  B. Ermentrout,et al.  An adaptive model for synchrony in the firefly Pteroptyx malaccae , 1991 .

[30]  G. Ermentrout,et al.  Coupled oscillators and the design of central pattern generators , 1988 .