Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement

We present the first asymptotically optimal feedback planning algorithm for nonholonomic systems and additive cost functionals. Our algorithm is based on three well-established numerical practices: 1) positive coefficient numerical approximations of the Hamilton-Jacobi-Bellman equations; 2) the Fast Marching Method, which is a fast nonlinear solver that utilizes Bellman’s dynamic programming principle for efficient computations; and 3) an adaptive mesh-refinement algorithm designed to improve the resolution of an initial simplicial mesh and reduce the solution numerical error. By refining the discretization mesh globally, we compute a sequence of numerical solutions that converges to the true viscosity solution of the Hamilton-Jacobi-Bellman equations. In order to reduce the total computational cost of the proposed planning algorithm, we find that it is sufficient to refine the discretization within a small region in the vicinity of the optimal trajectory. Numerical experiments confirm our theoretical findings and establish that our algorithm outperforms previous asymptotically optimal planning algorithms, such as PRM* and RRT*.

[1]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  Alexander Vladimirsky,et al.  Causal Domain Restriction for Eikonal Equations , 2013, SIAM J. Sci. Comput..

[4]  Emilio Frazzoli,et al.  RRTX: Real-Time Motion Planning/Replanning for Environments with Unpredictable Obstacles , 2014, WAFR.

[5]  Ángel Plaza,et al.  On the adjacencies of triangular meshes based on skeleton-regular partitions , 2002 .

[6]  Ariel Felner,et al.  Theta*: Any-Angle Path Planning on Grids , 2007, AAAI.

[7]  Emilio Frazzoli,et al.  Asymptotically Optimal Feedback Planning: FMM Meets Adaptive Mesh Refinement , 2014, WAFR.

[8]  M. Rivara A grid generator based on 4‐triangles conforming mesh‐refinement algorithms , 1987 .

[9]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[10]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[11]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[12]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[13]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[14]  Marco Pavone,et al.  Fast Marching Trees: A Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions , 2013, ISRR.

[15]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[16]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[17]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[18]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[19]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  G. Carey,et al.  Local refinement of simplicial grids based on the skeleton , 2000 .

[21]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[22]  Jur P. van den Berg,et al.  Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[23]  Kostas E. Bekris,et al.  Sparse roadmap spanners for asymptotically near-optimal motion planning , 2014, Int. J. Robotics Res..

[24]  William F. Mitchell,et al.  Optimal Multilevel Iterative Methods for Adaptive Grids , 1992, SIAM J. Sci. Comput..

[25]  Anthony Stentz,et al.  Field D*: An Interpolation-Based Path Planner and Replanner , 2005, ISRR.

[26]  S. L. Valle Numerical computation of optimal navigation functions on a simplicial complex , 1998 .

[27]  Randolph E. Bank,et al.  The use of adaptive grid refinement for badly behaved elliptic partial differential equations , 1980 .

[28]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[29]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[30]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[31]  J. Sethian,et al.  Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Angel Plaza,et al.  A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes , 2012, Appl. Math. Comput..

[33]  Mark Haiman,et al.  A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..

[34]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. LaValle,et al.  Efficient computation of optimal navigation functions for nonholonomic planning , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[36]  Sergey Korotov,et al.  Acute Type Refinements of Tetrahedral Partitions of Polyhedral Domains , 2001, SIAM J. Numer. Anal..

[37]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[38]  Emilio Frazzoli,et al.  An incremental sampling-based algorithm for stochastic optimal control , 2012, 2012 IEEE International Conference on Robotics and Automation.

[39]  Steven M. LaValle,et al.  Continuous planning with winding constraints using optimal heuristic-driven front propagation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[40]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[41]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[42]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[44]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[45]  Steven M. LaValle,et al.  Simplicial Dijkstra and A∗ Algorithms: From Graphs to Continuous Spaces , 2012, Adv. Robotics.

[46]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[47]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[48]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[49]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[50]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[51]  Ken Goldberg,et al.  ANA*: anytime nonparametric A* , 2011, AAAI 2011.

[52]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[53]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[54]  Joseph S. B. Mitchell Shortest paths among obstacles in the plane , 1996, Int. J. Comput. Geom. Appl..

[55]  Leslie Pack Kaelbling,et al.  LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics , 2012, 2012 IEEE International Conference on Robotics and Automation.

[56]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..

[57]  Angel Plaza,et al.  Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric , 2013, Appl. Math. Comput..

[58]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[59]  F. Stenger,et al.  A lower bound on the angles of triangles constructed by bisecting the longest side , 1975 .

[60]  David G. Kirkpatrick,et al.  Pseudo Approximation Algorithms with Applications to Optimal Motion Planning , 2004, Discret. Comput. Geom..

[61]  Chee-Keng Yap,et al.  Approximate Euclidean shortest path in 3-space , 1994, SCG '94.

[62]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[63]  Jae-Hoon Choi,et al.  Quality-improved local refinement of tetrahedral mesh based on element-wise refinement switching , 2003 .

[64]  Kostas E. Bekris,et al.  Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning , 2014, WAFR.

[65]  Dmytro S. Yershov Fast numerical algorithms for optimal robot motion planning , 2013 .

[66]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[67]  Dan Halperin,et al.  Asymptotically near-optimal RRT for fast, high-quality, motion planning , 2014, ICRA.

[68]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.

[69]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..