2004 Special Issue The contribution of vertical and horizontal connections to the receptive field center and surround in V1 q

Here we review the results of anatomical and physiological studies in tree shrew visual cortex which focus on the contribution of vertical and horizontal inputs to receptive field center and surround properties of layer 2/3 neurons. A fundamental feature of both sets of connections is the arrangement of axon arbors in a fashion that respects both the orientation preference and retinotopic displacement of the target site. As a result, layer 2/3 neurons receive convergent input from populations of layer 4 and other layer 2/3 neurons whose receptive fields are displaced along an axis in visual space that corresponds to their preferred orientation. Although, horizontal connections extend for greater distances across the cortical surface than vertical connections, the majority of these inputs link neurons with overlapping receptive fields, emphasizing that both feed-forward and recurrent circuits are likely to play a constructive role in generating properties (such as orientation selectivity) that define the receptive field center. Both within and beyond the dimensions of the receptive field center, the distribution of horizontal connections accords remarkably well with the magnitude and axial tuning of length summation effects. Taken together, these results suggest a continuum of functional properties that transcends the traditional designation of receptive field center and surround. By extension, we suggest that the perceptual effects of stimulus context may arise from stimulus interactions within the receptive field center as well as between center and surround. q 2004 Elsevier Ltd. All rights reserved.

[1]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[2]  U. Eysel,et al.  GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex , 2004, Experimental Brain Research.

[3]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[4]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[5]  D. Whitteridge,et al.  Physiological and morphological properties of identified basket cells in the cat's visual cortex , 2004, Experimental Brain Research.

[6]  P. O. Bishop,et al.  Spatial summation of responses in receptive fields of single cells in cat striate cortex , 1978, Experimental Brain Research.

[7]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[8]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[9]  David Fitzpatrick,et al.  Emergent Properties of Layer 2/3 Neurons Reflect the Collinear Arrangement of Horizontal Connections in Tree Shrew Visual Cortex , 2003, The Journal of Neuroscience.

[10]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[11]  Robert Shapley,et al.  Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response , 2003, Journal of Physiology-Paris.

[12]  Ohad Ben-Shahar,et al.  Cortical connections and early visual function: intra- and inter-columnar processing , 2003, Journal of Physiology-Paris.

[13]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[14]  M. Carandini,et al.  A Synaptic Explanation of Suppression in Visual Cortex , 2002, The Journal of Neuroscience.

[15]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[16]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[17]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[18]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[19]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[20]  J. B. Levitt,et al.  The spatial extent over which neurons in macaque striate cortex pool visual signals , 2002, Visual Neuroscience.

[21]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[22]  Siegrid Löwel,et al.  GABA-inactivation attenuates colinear facilitation in cat primary visual cortex , 2002, Experimental Brain Research.

[23]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[24]  B. Roerig,et al.  Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. , 2002, Cerebral cortex.

[25]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[26]  P. Adorján,et al.  Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps , 2001, The Journal of comparative neurology.

[27]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[28]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[29]  J. Kaas,et al.  Binocular cross-orientation suppression in the primary visual cortex (V1) of infant rhesus monkeys. , 2000, Investigative ophthalmology & visual science.

[30]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[31]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[32]  Stephen Grossberg,et al.  Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps , 2000, Neural Networks.

[33]  I. Ohzawa,et al.  Suppression outside the classical cortical receptive field , 2000, Visual Neuroscience.

[34]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[35]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[36]  I. Ohzawa,et al.  Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex , 1999, The Journal of Neuroscience.

[37]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[39]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[40]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[41]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[42]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[43]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[44]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[45]  Stephen Grossberg,et al.  A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance , 1998, Neural Networks.

[46]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[47]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[48]  M. Dalva,et al.  Relationships between Local Synaptic Connections and Orientation Domains in Primary Visual Cortex , 1997, Neuron.

[49]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[50]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[51]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[52]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[53]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[54]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[56]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[57]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[58]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[59]  J. B. Levitt,et al.  Substrates for Interlaminar Connections in Area V1 of Macaque Monkey Cerebral Cortex , 1994 .

[60]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[61]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[62]  Asaf Keller,et al.  Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex , 1993, The Journal of comparative neurology.

[63]  C D Gilbert,et al.  Circuitry, architecture, and functional dynamics of visual cortex. , 1993, Cerebral cortex.

[64]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[65]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[66]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[67]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[70]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[71]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[73]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  A. Cowey,et al.  Retrograde transport of gamma-amino[3H]butyric acid reveals specific interlaminar connections in the striate cortex of monkey. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. L. Humphrey,et al.  Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis) , 1982, The Journal of comparative neurology.

[76]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[77]  A L Humphrey,et al.  Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping , 1980, The Journal of comparative neurology.

[78]  A. L. Humphrey,et al.  Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). I. Microelectrode recording , 1980, The Journal of comparative neurology.

[79]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[80]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[81]  K. Albus,et al.  Effects of interacting visual patterns on single cell responses in cat's striate cortex , 1977, Vision Research.

[82]  A. Sillito The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells , 1977, The Journal of physiology.

[83]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[84]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[85]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[86]  B. H. Jones Responses of single neurons in cat visual cortex to a simple and a more complex stimulus. , 1970, The American journal of physiology.

[87]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[88]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[89]  W. Burke,et al.  The identification of single units in central visual pathways , 1962, The Journal of physiology.

[90]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.