Relative Position Computation for Assembly Planning With Planar Toleranced Parts

In this paper we present a new framework for worst-case toleranced assembly planning of planar mechanical systems. Unlike most assembly planners, which produce plans for nominal parts, our framework incorporates the inherent imprecision of the manufacturing process, which introduces uncertainties in the shape and size of the assembly parts. It accounts for the uncertainty of the relative part placements in the assembled state and allows planning for all assembly instances. Our framework is more general than existing approaches in terms of the part model, the tolerance specification model, and the type of motions used in the assembly sequences. We describe efficient algorithms for computing the sensitivity of part positioning to variations in part geometries, and for incorporating these computations into the geometric core of existing assembly planners for nominal parts. We show that the cost of accounting for toleranced parts in planning is a multiplicative factor which is a polynomial of low degree in the number of tolerance parameters. Our implementation and experiments on five assembly models show that tolerancing significantly reduces the volume of the space of valid motions for assembly sequence planning, and that for translational motions this reduction depends linearly on the size of the tolerance intervals. We conclude that geometric computation for assembly planning with tolerance parts is time efficient and practical.

[1]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[2]  N. P. Juster,et al.  Modelling and representation of dimensions and tolerances: a survey , 1992, Comput. Aided Des..

[3]  Jean-Claude Latombe,et al.  Effect of tolerancing on the relative positions of parts in an assembly , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  V. Srinivasan Theory of Dimensioning: An Introduction to Parameterizing Geometric Models , 2003 .

[5]  K. Young,et al.  AMERICAN SOCIETY OF MECHANICAL ENGINEERS. , 1880, Science.

[6]  Leonidas J. Guibas,et al.  The Centroid of Points with Approximate Weights , 1995, ESA.

[7]  Utpal Roy,et al.  Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances , 1999, Comput. Aided Des..

[8]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[9]  Leonidas J. Guibas,et al.  Polyhedral Assembly Partitioning Using Maximally Covered Cells in Arrangements of Convex Polytopes , 1998, Int. J. Comput. Geom. Appl..

[10]  Masatomo Inui,et al.  Positioning conditions of parts with tolerances in an assembly , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[12]  Joshua U. Turner Relative positioning of parts in assemblies using mathematical programming , 1990, Comput. Aided Des..

[13]  Godfried T. Toussaint,et al.  Separability of pairs of polygons through single translations , 1987, Robotica.

[14]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 1998, SCG '98.

[15]  Daniel E. Whitney Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development [Book Review] , 2005, IEEE Robotics & Automation Magazine.

[16]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[17]  Leo Joskowicz,et al.  Efficient Linear Unboundedness Testing: Algorithm and Applications to Translational Assembly Planning , 2000, Int. J. Robotics Res..

[18]  Matthew T. Mason,et al.  Orienting Toleranced Polygonal Parts , 2000, Int. J. Robotics Res..

[19]  Randall H. Wilson,et al.  Assembly partitioning along simple paths: the case of multiple translations , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  Joseph K. Davidson,et al.  Areal Coordinates: The Basis of a Mathematical Model for Geometric Tolerances , 2003 .

[22]  Mark H. Overmars,et al.  to the author , 1994 .

[23]  Richard A. Volz,et al.  On the automatic generation of plans for mechanical assembly , 1988 .

[24]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[25]  Utpal Roy,et al.  Relative positioning of toleranced polyhedral parts in an assembly , 2001 .

[26]  Nancy M. Amato,et al.  Disassembly sequencing using a motion planning approach , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[27]  G. Ziegler Lectures on Polytopes , 1994 .

[28]  Leo Joskowicz,et al.  Geometric computation for assembly planning with planar toleranced parts , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[29]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[30]  Ulrike Thomas,et al.  Efficient assembly sequence planning using stereographical projections of C-space obstacles , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[31]  Aristides A. G. Requicha,et al.  Toward a Theory of Geometric Tolerancing , 1983 .

[32]  Jean-Claude Latombe,et al.  Assembly sequencing with toleranced parts , 1995 .

[33]  Lydia E. Kavraki,et al.  Two-Handed Assembly Sequencing , 1995, Int. J. Robotics Res..

[34]  Joshua U. Turner,et al.  Relative positioning of variational part models for design analysis , 1994, Comput. Aided Des..

[35]  Randall H. Wilson,et al.  On geometric assembly planning , 1992 .

[36]  Leo Joskowicz,et al.  Uncertainty envelopes , 2005, EuroCG.

[37]  Rajit Gadh,et al.  A geometric algorithm for single selective disassembly using the wave propagation abstraction , 1998, Comput. Aided Des..

[38]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[39]  Fabian Schwarzer,et al.  Geometric reasoning about translational motions , 2000 .

[40]  David P. Dobkin,et al.  Computational geometry in a curved world , 1990, Algorithmica.

[41]  Leo Joskowicz,et al.  Tolerance envelopes of planar mechanical parts with parametric tolerances , 2005, Comput. Aided Des..

[42]  Randy C. Brost,et al.  Automatic Design of 3-D Fixtures and Assembly Pallets , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[43]  Chandrajit L. Bajaj,et al.  Convex Hull of Objects Bounded by Algebraic Curves , 2013 .