A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

[1]  Chao Zhang,et al.  Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse , 2015 .

[2]  Ilya Avdeev,et al.  Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact , 2014 .

[3]  W. Lai,et al.  Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions , 2014 .

[4]  P. Ramadass,et al.  Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique , 2014 .

[5]  Jeff Dahn,et al.  Building a “smart nail” for penetration tests on Li-ion cells , 2014 .

[6]  T. Wierzbicki,et al.  Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells , 2014 .

[7]  Christopher J. Orendorff,et al.  Evaluation of mechanical abuse techniques in lithium ion batteries , 2014 .

[8]  A. Prota,et al.  Numerical assessment of the impact behavior of honeycomb sandwich structures , 2013 .

[9]  W. Lai,et al.  Computational models for simulations of lithium-ion battery cells under constrained compression tests , 2013 .

[10]  T. Wierzbicki,et al.  Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells , 2013 .

[11]  T. Wierzbicki,et al.  Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions , 2012 .

[12]  D. H. Doughty,et al.  Vehicle Battery Safety Roadmap Guidance , 2012 .

[13]  Lars Greve,et al.  Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells , 2012 .

[14]  T. Wierzbicki,et al.  Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity , 2012 .

[15]  Azadeh Sheidaei,et al.  Mechanical behavior of a battery separator in electrolyte solutions , 2011 .

[16]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[17]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .

[18]  Marc Doyle,et al.  Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases , 1995 .

[19]  Craig B. Arnold,et al.  Mechanical Properties of a Battery Separator under Compression and Tension , 2014 .

[20]  W. Lai,et al.  Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions , 2014 .

[21]  Craig B. Arnold,et al.  A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates , 2014 .

[22]  A. Francis,et al.  Rate- and Temperature-Dependent Material Behavior of a Multilayer Polymer Battery Separator , 2013, Journal of Materials Engineering and Performance.

[23]  Richard Lee Hill,et al.  Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity , 2011 .

[24]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[25]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[26]  Ragnar Holm,et al.  Electric contacts handbook , 1958 .