From humans to humanoids: The optimal control framework

In the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control.

[1]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[2]  Emanuel Todorov,et al.  Efficient computation of optimal actions , 2009, Proceedings of the National Academy of Sciences.

[3]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[4]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[5]  Stefan Schaal,et al.  Reinforcement learning of impedance control in stochastic force fields , 2011, 2011 IEEE International Conference on Development and Learning (ICDL).

[6]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[7]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[8]  Emmanuel Guigon,et al.  Models and architectures for motor control: Simple or complex? , 2010 .

[9]  Giulio Sandini,et al.  Computing robot internal/external wrenches by means of inertial, tactile and F/T sensors: Theory and implementation on the iCub , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[10]  D. B. Lockhart,et al.  Optimal sensorimotor transformations for balance , 2007, Nature Neuroscience.

[11]  Toshikazu Matsui A new optimal control model for reproducing two-point reaching movements of human three-joint arm with wrist joint's freezing mechanism , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[12]  Miroslav Krstic Inverse optimal adaptive control—The interplay between update laws, control laws, and Lyapunov functions , 2009, 2009 American Control Conference.

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  J. Krakauer,et al.  A computational neuroanatomy for motor control , 2008, Experimental Brain Research.

[15]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[16]  J A Kelso,et al.  Dynamic pattern generation in behavioral and neural systems. , 1988, Science.

[17]  Kazuhito Yokoi,et al.  Motion Planning for Humanoid Robots , 2014 .

[18]  R. Ivry,et al.  The coordination of movement: optimal feedback control and beyond , 2010, Trends in Cognitive Sciences.

[19]  Rieko Osu,et al.  Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory , 2001, Neural Networks.

[20]  Toshikazu Matsui,et al.  Effectiveness of human three-joint arm's optimal control model characterized by hand-joint's freezing mechanism in reproducing constrained reaching movement characteristics , 2009, 2009 ICCAS-SICE.

[21]  Emanuel Todorov,et al.  Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System , 2005, Neural Computation.

[22]  Eiichi Yoshida,et al.  An optimal control model unifying holonomic and nonholonomic walking , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[23]  M. Kawato,et al.  Visual Feedback Is Not Necessary for the Learning of Novel Dynamics , 2007, PloS one.

[24]  P. Viviani,et al.  The law relating the kinematic and figural aspects of drawing movements. , 1983, Acta psychologica.

[25]  Jan Peters,et al.  Noname manuscript No. (will be inserted by the editor) Policy Search for Motor Primitives in Robotics , 2022 .

[26]  Helmut Hauser,et al.  Biologically inspired kinematic synergies enable linear balance control of a humanoid robot , 2011, Biological Cybernetics.

[27]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[28]  Brian Scassellati,et al.  Humanoid Robots: A New Kind of Tool , 2000, IEEE Intell. Syst..

[29]  B. Øksendal Stochastic Differential Equations , 1985 .

[30]  Magnus J. E. Richardson,et al.  On the Emulation of Natural Movements by Humanoid Robots , 2022 .

[31]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[32]  Christopher G. Atkeson,et al.  Adapting human motion for the control of a humanoid robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[33]  Warren E. Dixon,et al.  Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[34]  Olivier Sigaud,et al.  On-line regression algorithms for learning mechanical models of robots: A survey , 2011, Robotics Auton. Syst..

[35]  Ning Qian,et al.  An optimization principle for determining movement duration. , 2006, Journal of neurophysiology.

[36]  Michael Gienger,et al.  Task-oriented whole body motion for humanoid robots , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[37]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[38]  E. Bizzi,et al.  Linear combinations of primitives in vertebrate motor control. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. L. Nelson Physical principles for economies of skilled movements , 1983, Biological Cybernetics.

[40]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[41]  Christian Igel,et al.  Similarities and differences between policy gradient methods and evolution strategies , 2008, ESANN.

[42]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[43]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[44]  Alain Berthoz,et al.  Movement Timing and Invariance Arise from Several Geometries , 2009, PLoS Comput. Biol..

[45]  M. Eckstein,et al.  Optimal observer model of single-fixation oddity search predicts a shallow set-size function. , 2007, Journal of vision.

[46]  Robert Sekuler,et al.  Learning to imitate novel motion sequences. , 2007, Journal of vision.

[47]  Tetsuya Iwasaki,et al.  Optimal Gaits for Mechanical Rectifier Systems , 2011, IEEE Transactions on Automatic Control.

[48]  Christopher G. Atkeson,et al.  Multiple balance strategies from one optimization criterion , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[49]  R. Schmidt A schema theory of discrete motor skill learning. , 1975 .

[50]  Daniel A. Braun,et al.  Learning Optimal Adaptation Strategies in Unpredictable Motor Tasks , 2009, The Journal of Neuroscience.

[51]  Reza Shadmehr,et al.  Motor Adaptation as a Process of Reoptimization , 2008, The Journal of Neuroscience.

[52]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[53]  Frank L. Lewis,et al.  Intelligent optimal control of robotic manipulators using neural networks , 2000, Autom..

[54]  Jesús Dapena,et al.  THE EVOLUTION OF HIGH JUMPING TECHNIQUE: BIOMECHANICAL ANALYSIS , 2002 .

[55]  Marc Toussaint,et al.  Optimization of sequential attractor-based movement for compact behaviour generation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[56]  Giulio Sandini,et al.  Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Alexander Rm,et al.  A minimum energy cost hypothesis for human arm trajectories. , 1997 .

[58]  Moritz Diehl,et al.  Fast Motions in Biomechanics and Robotics , 2006 .

[59]  S. Schaal The Computational Neurobiology of Reaching and Pointing — A Foundation for Motor Learning by Reza Shadmehr and Steven P. Wise , 2007 .

[60]  Vincent Padois,et al.  Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions , 2011, 2011 IEEE International Conference on Robotics and Automation.

[61]  Vladimir M. Zatsiorsky,et al.  Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods , 2011, Biological Cybernetics.

[62]  Giulio Sandini,et al.  Approximate optimal control for reaching and trajectory planning in a humanoid robot , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[63]  Oscar Barambones,et al.  Robust neural control for robotic manipulators , 2002, Autom..

[64]  Daniel A. Braun,et al.  Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control , 2011, Proceedings of the Royal Society B: Biological Sciences.

[65]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[66]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[67]  Brett Browning,et al.  A survey of robot learning from demonstration , 2009, Robotics Auton. Syst..

[68]  J. Konczak,et al.  The development toward stereotypic arm kinematics during reaching in the first 3 years of life , 1997, Experimental Brain Research.

[69]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[70]  Jean-Paul Laumond,et al.  An Optimality Principle Governing Human Walking , 2008, IEEE Transactions on Robotics.

[71]  S. Schaal,et al.  Computational motor control in humans and robots , 2005, Current Opinion in Neurobiology.

[72]  Amir Karniel,et al.  Minimum Acceleration Criterion with Constraints Implies Bang-Bang Control as an Underlying Principle for Optimal Trajectories of Arm Reaching Movements , 2008, Neural Computation.

[73]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[74]  T. Flash,et al.  Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. , 1995, Journal of experimental psychology. Human perception and performance.

[75]  E. Burdet,et al.  Impedance control is tuned to multiple directions of movement , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[76]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[77]  Sethu Vijayakumar,et al.  Adaptive Optimal Feedback Control with Learned Internal Dynamics Models , 2010, From Motor Learning to Interaction Learning in Robots.

[78]  Eiichi Yoshida,et al.  An optimization formulation for footsteps planning , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[79]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[80]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[81]  Patrick E. Crago,et al.  Optimal control of antagonistic muscle stiffness during voluntary movements , 1994, Biological Cybernetics.

[82]  Stefan Schaal,et al.  Variable Impedance Control - A Reinforcement Learning Approach , 2010, Robotics: Science and Systems.

[83]  M. Xu-Wilson,et al.  Movement Duration as an Emergent Property of Reward Directed Motor Control , 2010 .

[84]  Pat Langley,et al.  Editorial: On Machine Learning , 1986, Machine Learning.

[85]  R. Johansson,et al.  Prediction Precedes Control in Motor Learning , 2003, Current Biology.

[86]  A. Kuo An optimal state estimation model of sensory integration in human postural balance , 2005, Journal of neural engineering.

[87]  Giulio Sandini,et al.  An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[88]  A. G. Feldman,et al.  The origin and use of positional frames of reference in motor control , 1995, Behavioral and Brain Sciences.

[89]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[90]  Philippe Fraisse,et al.  Planning and fast re-planning of safe motions for humanoid robots: Application to a kicking motion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[91]  P. Khargonekar Control System Synthesis: A Factorization Approach (M. Vidyasagar) , 1987 .

[92]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[93]  Martin Volker Butz,et al.  The continuous end-state comfort effect: weighted integration of multiple biases , 2012, Psychological research.

[94]  J Dapena Mechanics of rotation in the Fosbury-flop. , 1980, Medicine and science in sports and exercise.

[95]  Darwin G. Caldwell,et al.  Robot motor skill coordination with EM-based Reinforcement Learning , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[96]  M. Kawato,et al.  Can a kinetic optimization criterion predict both arm trajectory and final arm posture? , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[97]  Ruggero Frezza,et al.  A control theory approach to the analysis and synthesis of the experimentally observed motion primitives , 2005, Biological Cybernetics.

[98]  Mitsuji Sampei,et al.  Optimal ball pitching with an underactuated model of a human arm , 2010, 2010 IEEE International Conference on Robotics and Automation.

[99]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[100]  Y Uno,et al.  Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. , 1999, Journal of neurophysiology.

[101]  Jindrich Kodl,et al.  The CNS Stochastically Selects Motor Plan Utilizing Extrinsic and Intrinsic Representations , 2011, PloS one.

[102]  Philippe Lefèvre,et al.  Optimal integration of gravity in trajectory planning of vertical pointing movements. , 2009, Journal of neurophysiology.

[103]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[104]  Giorgio Metta,et al.  An Application of Receding-Horizon Neural Control in Humanoid Robotics , 2009 .

[105]  M. Desmurget,et al.  Computational motor control: feedback and accuracy , 2008, The European journal of neuroscience.

[106]  Olivier Sigaud,et al.  Path Integral Policy Improvement with Covariance Matrix Adaptation , 2012, ICML.

[107]  A. d’Avella,et al.  Locomotor Primitives in Newborn Babies and Their Development , 2011, Science.

[108]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[109]  Michael I. Jordan,et al.  A Minimal Intervention Principle for Coordinated Movement , 2002, NIPS.

[110]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[111]  P. Soueres,et al.  A principled approach to biological motor control for generating humanoid robot reaching movements , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[112]  D Tlalolini,et al.  Human-Like Walking: Optimal Motion of a Bipedal Robot With Toe-Rotation Motion , 2011, IEEE/ASME Transactions on Mechatronics.

[113]  Nicola Vitiello,et al.  A robotic model to investigate human motor control , 2011, Biological Cybernetics.

[114]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[115]  Degang Chen,et al.  Optimal motion planning for flexible space robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[116]  B. Siciliano,et al.  Second-order kinematic control of robot manipulators with Jacobian damped least-squares inverse: theory and experiments , 1997 .

[117]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[118]  Emanuel Todorov,et al.  Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems , 2004, ICINCO.

[119]  Joseph T. McGuire,et al.  A Neural Signature of Hierarchical Reinforcement Learning , 2011, Neuron.

[120]  J Dapena Mechanics of translation in the fosbury-flop. , 1980, Medicine and science in sports and exercise.

[121]  Stefan Schaal,et al.  Reinforcement learning of motor skills in high dimensions: A path integral approach , 2010, 2010 IEEE International Conference on Robotics and Automation.

[122]  S. Gepshtein,et al.  Optimality of human movement under natural variations of visual-motor uncertainty. , 2007, Journal of vision.

[123]  Guang-Ping He,et al.  Optimal motion planning of a one-legged hopping robot , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[124]  K. Mombaur,et al.  Modeling and Optimal Control of Human-Like Running , 2010, IEEE/ASME Transactions on Mechatronics.

[125]  Martin V. Butz,et al.  Learning sensorimotor control structures with XCSF: redundancy exploitation and dynamic control , 2009, GECCO '09.

[126]  M. Landy,et al.  Decision making, movement planning and statistical decision theory , 2008, Trends in Cognitive Sciences.

[127]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[128]  Pierre-Brice Wieber,et al.  Fast Direct Multiple Shooting Algorithms for Optimal Robot Control , 2005 .

[129]  R. Shadmehr,et al.  Temporal Discounting of Reward and the Cost of Time in Motor Control , 2010, The Journal of Neuroscience.

[130]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[131]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[132]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[133]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[134]  P. Morasso Three dimensional arm trajectories , 1983, Biological Cybernetics.

[135]  H. Zelaznik,et al.  Motor-output variability: a theory for the accuracy of rapid motor acts. , 1979, Psychological review.

[136]  R. McN. Alexander,et al.  A minimum energy cost hypothesis for human arm trajectories , 1997, Biological Cybernetics.

[137]  Emmanuel Guigon,et al.  Optimality, stochasticity, and variability in motor behavior , 2008, Journal of Computational Neuroscience.

[138]  Hirokazu Seki,et al.  Minimum jerk control of power assisting robot on human arm behavior characteristic , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[139]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[140]  Rieko Osu,et al.  CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm , 2008, The Journal of Neuroscience.

[141]  A. Berthoz,et al.  Head stabilization during various locomotor tasks in humans , 2004, Experimental Brain Research.

[142]  T. Flash,et al.  Comparing Smooth Arm Movements with the Two-Thirds Power Law and the Related Segmented-Control Hypothesis , 2002, The Journal of Neuroscience.

[143]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[144]  R. K. Simpson Nature Neuroscience , 2022 .

[145]  Olivier White,et al.  Use-Dependent and Error-Based Learning of Motor Behaviors , 2010, The Journal of Neuroscience.

[146]  K. Dupree,et al.  Inverse optimal adaptive control of a nonlinear Euler-Lagrange system, part I: Full state feedback , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[147]  Berthold Bäuml,et al.  Kinematically optimal catching a flying ball with a hand-arm-system , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[148]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[149]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[150]  Christopher G. Atkeson,et al.  Control of a walking biped using a combination of simple policies , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[151]  Paolo Viviani,et al.  Do Units of Motor Action Really Exist , 1986 .

[152]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  Toshikazu Matsui,et al.  A New Optimal Control Model for Reproducing Human Arm's Two-Point Reaching Movements: A Modified Minimum Torque Change Model , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[154]  Daniel M. Wolpert,et al.  The Main Sequence of Saccades Optimizes Speed-accuracy Trade-off , 2006, Biological Cybernetics.

[155]  Yiannis Demiris,et al.  Optimal robot arm control using the minimum variance model , 2005, J. Field Robotics.

[156]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[157]  Jun Nakanishi,et al.  Learning Movement Primitives , 2005, ISRR.

[158]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[159]  P. Viviani,et al.  Biological movements look uniform: evidence of motor-perceptual interactions. , 1992, Journal of experimental psychology. Human perception and performance.

[160]  Olivier Sigaud,et al.  Towards fast and adaptive optimal control policies for robots : A direct policy search approach , 2012 .

[161]  Emanuel Todorov,et al.  Compositionality of optimal control laws , 2009, NIPS.

[162]  R A Scheidt,et al.  Persistence of motor adaptation during constrained, multi-joint, arm movements. , 2000, Journal of neurophysiology.

[163]  Stefan Schaal,et al.  Robot Programming by Demonstration , 2009, Springer Handbook of Robotics.

[164]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.

[165]  Kazuhito Yokoi,et al.  Generating whole body motions for a biped humanoid robot from captured human dances , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[166]  Stefan Schaal,et al.  2008 Special Issue: Reinforcement learning of motor skills with policy gradients , 2008 .

[167]  Scott T. Grafton,et al.  Forward modeling allows feedback control for fast reaching movements , 2000, Trends in Cognitive Sciences.

[168]  Francesco Nori,et al.  Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach , 2011, PLoS Comput. Biol..

[169]  S. Chiaverini,et al.  Achieving user-defined accuracy with damped least-squares inverse kinematics , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[170]  Alin Albu-Schäffer,et al.  Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[171]  J. Kelso Human Motor Behavior: An Introduction , 1982 .

[172]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[173]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, SIGGRAPH 2009.

[174]  Antonio Bicchi,et al.  An atlas of physical human-robot interaction , 2008 .

[175]  Jean-Paul Gauthier,et al.  The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements , 2008, PLoS Comput. Biol..

[176]  Armin Biess,et al.  A Computational Model for Redundant Human Three-Dimensional Pointing Movements: Integration of Independent Spatial and Temporal Motor Plans Simplifies Movement Dynamics , 2007, The Journal of Neuroscience.

[177]  Joshua G. Hale,et al.  Using Humanoid Robots to Study Human Behavior , 2000, IEEE Intell. Syst..

[178]  I.,et al.  Fitts' Law as a Research and Design Tool in Human-Computer Interaction , 1992, Hum. Comput. Interact..

[179]  Han-Xiong Li,et al.  Robot discrete adaptive control based on dynamic inversion using dynamical neural networks , 2002, Autom..

[180]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, ACM Trans. Graph..

[181]  H. Heuer,et al.  Generation and modulation of action patterns , 1986 .

[182]  Rieko Osu,et al.  Trajectory formation based on the minimum commanded torque change model using the Euler–Poisson equation , 2005 .

[183]  E. Todorov,et al.  A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[184]  Rieko Osu,et al.  Trajectory formation based on the minimum commanded torque change model using the Euler-Poisson equation , 2005, Systems and Computers in Japan.

[185]  Stefan Schaal,et al.  Learning variable impedance control , 2011, Int. J. Robotics Res..

[186]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[187]  Michael I. Jordan,et al.  Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study , 1995, Experimental Brain Research.

[188]  Alin Albu-Schäffer,et al.  Safety Analysis for a Human-Friendly Manipulator , 2010, Int. J. Soc. Robotics.

[189]  Sethu Vijayakumar,et al.  Methods for Learning Control Policies from Variable-Constraint Demonstrations , 2010, From Motor Learning to Interaction Learning in Robots.

[190]  Kazuhito Yokoi,et al.  Planning Whole-body Humanoid Locomotion, Reaching, and Manipulation , 2010 .

[191]  Francesco Lacquaniti,et al.  Catching a Ball at the Right Time and Place: Individual Factors Matter , 2012, PloS one.

[192]  Ron Meir,et al.  Delayed feedback control requires an internal forward model , 2011, Biological Cybernetics.

[193]  D. Wolpert,et al.  Motor prediction , 2001, Current Biology.