Sensing and Filtering : A Tutorial Based on Preimages and Information Spaces

This tutorial presents a fresh perspective on sensing uncertainty and filtering with the intention of understanding what information is minimally needed to achieve a specified task. The guiding principle is not to sense, represent, and encode more than is necessary. The concepts and tools are motivated by many tasks of current interest, such as tracking, monitoring, navigation, pursuit-evasion, exploration, and mapping. First, an overview of sensors that appear in numerous systems is presented. Following this, the notion of a virtual sensor is explained, which provides a mathematical way to model numerous sensors while abstracting away their particular physical implementation. Dozens of useful models are given, each as a mapping from the physical world to the set of possible sensor outputs. Preimages with respect to this mapping represent a fundamental source of uncertainty: These are equivalence classes of physical states that would produce the same sensor output. Pursuing this idea further, the powerful notion of a sensor lattice is introduced, in which all possible virtual sensors can be rigorously compared. The next part introduces filters that aggregate information from multiple sensor readings. The integration of information over space and time is considered. In the spatial setting, classical triangulation methods are expressed in terms of preimages. In the temporal setting, an information-space framework is introduced that encompasses familiar Kalman and Bayesian filters, but also introduces a novel family called combinatorial filters. Finally, the planning problem is presented in terms of filters and information spaces. The tutorial concludes with some discussion about connections to many related research fields and numerous open problems and future research directions.

[1]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[6]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[7]  Editors , 1986, Brain Research Bulletin.

[8]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  R. Bertram,et al.  Stochastic Systems , 2008, Control Theory for Physicists.

[10]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[11]  M. W. Shields An Introduction to Automata Theory , 1988 .

[12]  Vladimir J. Lumelsky,et al.  A paradigm for incorporating vision in the robot navigation function , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[13]  Kenneth Y. Goldberg,et al.  Bayesian grasping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[14]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Bruce Randall Donald,et al.  Sensor interpretation and task-directed planning using perceptual equivalence classes , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[17]  Jean-Claude Latombe,et al.  Robot Motion Planning with Uncertainty in Control and Sensing , 1991, Artif. Intell..

[18]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[19]  Thierry Fraichard,et al.  Dynamic trajectory planning with dynamic constraints: A 'state-time space' approach , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[20]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[21]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[22]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[23]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[24]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[25]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[26]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[27]  John G. Webster,et al.  The Measurement, Instrumentation and Sensors Handbook , 1998 .

[28]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[29]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[30]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[31]  James Llinas,et al.  Handbook of Multisensor Data Fusion , 2001 .

[32]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[33]  Kostas E. Bekris,et al.  Robotics-Based Location Sensing Using Wireless Ethernet , 2002, MobiCom '02.

[34]  Leonidas J. Guibas,et al.  Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..

[35]  S. Griffis EDITOR , 1997, Journal of Navigation.

[36]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[37]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[38]  Michael A. Erdmann,et al.  Randomization for robot tasks: Using dynamic programming in the space of knowledge states , 1993, Algorithmica.

[39]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[40]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[41]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[42]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[43]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[44]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[45]  Steven M. LaValle,et al.  Distance-Optimal Navigation in an Unknown Environment Without Sensing Distances , 2007, IEEE Transactions on Robotics.

[46]  Subhash Suri,et al.  Counting Targets with Mobile Sensors in an Unknown Environment , 2007, ALGOSENSORS.

[47]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[48]  Jason M. O'Kane,et al.  Comparing the Power of Robots , 2008, Int. J. Robotics Res..

[49]  Steven M. LaValle,et al.  Tracking hidden agents through shadow information spaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[50]  Paul Newman,et al.  Using incomplete online metric maps for topological exploration with the Gap Navigation Tree , 2008, 2008 IEEE International Conference on Robotics and Automation.

[51]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[52]  David Hsu,et al.  SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally Reachable Belief Spaces , 2008, Robotics: Science and Systems.

[53]  Fred Cohen,et al.  Sensor Beams, Obstacles, and Possible Paths , 2008, WAFR.

[54]  Steven M. LaValle,et al.  I-Bug: An intensity-based bug algorithm , 2009, 2009 IEEE International Conference on Robotics and Automation.

[55]  Leslie Pack Kaelbling,et al.  Belief space planning assuming maximum likelihood observations , 2010, Robotics: Science and Systems.