From evolutionary computation to the evolution of things

Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

[1]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[2]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[3]  Sophia Blau,et al.  Numerical Optimization Of Computer Models , 2016 .

[4]  J. Launer Darwin's dangerous idea. , 2002, QJM : monthly journal of the Association of Physicians.

[5]  Jürgen Branke,et al.  Balancing Population- and Individual-Level Adaptation in Changing Environments , 2009, Adapt. Behav..

[6]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[7]  Michèle Sebag,et al.  Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.

[8]  Alistair R. Clark,et al.  A Genetic Approach to Statistical Disclosure Control , 2012, IEEE Transactions on Evolutionary Computation.

[9]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[10]  Penousal Machado,et al.  The Art of Artificial Evolution , 2008 .

[11]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[12]  D. Floreano,et al.  A Quantitative Test of Hamilton's Rule for the Evolution of Altruism , 2011, PLoS biology.

[13]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[14]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[15]  Yan Meng,et al.  Morphogenetic Robotics: An Emerging New Field in Developmental Robotics , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  A. E. Eiben,et al.  In Vivo Veritas: Towards the Evolution of Things , 2014, PPSN.

[17]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[18]  Alberto Moraglio,et al.  Theory and Principled Methods for the Design of Metaheuristics , 2014, Natural Computing Series.

[19]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[20]  Inman Harvey,et al.  The Horizons of Evolutionary Robotics , 2014 .

[21]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[22]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[23]  Daniel A. Ashlock,et al.  Evolutionary computation for modeling and optimization , 2005 .

[24]  László Pál,et al.  A Comparison of Global Search Algorithms for Continuous Black Box Optimization , 2012, Evolutionary Computation.

[25]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[26]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[27]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[28]  Kenneth O. Stanley,et al.  Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space , 2011, Evolutionary Computation.

[29]  Peter J. Bentley,et al.  Introduction to creative evolutionary systems , 2001 .

[30]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[31]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[32]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms: The Computer Science Perspective , 2012 .

[33]  D. Floreano,et al.  Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection , 2010, PLoS biology.

[34]  Michèle Sebag,et al.  Analyzing bandit-based adaptive operator selection mechanisms , 2010, Annals of Mathematics and Artificial Intelligence.

[35]  Francisco J. Vico,et al.  Morphogenetic Engineering: Toward Programmable Complex Systems , 2013 .

[36]  Mark Harman,et al.  A Theoretical and Empirical Study of Search-Based Testing: Local, Global, and Hybrid Search , 2010, IEEE Transactions on Software Engineering.

[37]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms , 2015, Natural Computing Series.

[38]  Thomas Bäck,et al.  Contemporary Evolution Strategies , 2013, Natural Computing Series.

[39]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[40]  Phil Husbands,et al.  Evolutionary robotics , 2014, Evolutionary Intelligence.

[41]  A. Eiben,et al.  Embodied artificial evolution Artificial evolutionary systems in the 21 st Century , 2012 .

[42]  Una-May O'Reilly,et al.  Integrating generative growth and evolutionary computation for form exploration , 2007, Genetic Programming and Evolvable Machines.

[43]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[44]  Jonathan M. Garibaldi,et al.  GP challenge: evolving energy function for protein structure prediction , 2010, Genetic Programming and Evolvable Machines.

[45]  Stéphane Doncieux,et al.  New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop , 2011 .

[46]  F. R. A. Hopgood,et al.  Machine Intelligence 5 , 1971, The Mathematical Gazette.

[47]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[48]  John Jan. Long,et al.  Darwin's Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology , 2012 .

[49]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[50]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[51]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[52]  Larry Bull,et al.  Towards the Coevolution of Novel Vertical-Axis Wind Turbines , 2013, ArXiv.

[53]  Thomas Bartz-Beielstein,et al.  Experimental research in evolutionary computation , 2007, GECCO '07.

[54]  Thomas Bartz-Beielstein,et al.  Experimental Analysis of Optimization Algorithms: Tuning and Beyond , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[55]  Hod Lipson,et al.  Evolved Machines Shed Light on Robustness and Resilience , 2014, Proceedings of the IEEE.

[56]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[57]  Penousal Machado,et al.  The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music , 2007 .

[58]  Jordan B. Pollack,et al.  Embodied Evolution: Distributing an evolutionary algorithm in a population of robots , 2002, Robotics Auton. Syst..

[59]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[60]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[61]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[62]  Nathaniel Virgo,et al.  Evolvable Physical Self-Replicators , 2012, Artificial Life.

[63]  Larry Bull,et al.  Toward the Coevolution of Novel Vertical-Axis Wind Turbines , 2013, IEEE Transactions on Evolutionary Computation.

[64]  Intelligent Machinery 1948 Report for National Physical Laboratory Universal Turing Machine , 2022 .

[65]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[66]  Jason D. Lohn,et al.  Computer-Automated Evolution of an X-Band Antenna for NASA's Space Technology 5 Mission , 2011, Evolutionary Computation.

[67]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[68]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[69]  John Maynard Smith,et al.  Byte-sized evolution , 1992, Nature.

[70]  D. Piperno,et al.  Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico , 2009, Proceedings of the National Academy of Sciences.

[71]  J. Miller,et al.  Guidelines: From artificial evolution to computational evolution: a research agenda , 2006, Nature Reviews Genetics.

[72]  James E. Smith,et al.  Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms , 2010, Evolutionary Computation.

[73]  Wei Chen,et al.  Highly Efficient Light-Trapping Structure Design Inspired By Natural Evolution , 2013, Scientific Reports.

[74]  Miguel Arias Estrada,et al.  Evolutionary Design by Computers , 2009 .

[75]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[76]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[77]  Bogdan Filipič,et al.  A combined machine learning and genetic algorithm approach to controller design , 1999 .

[78]  A. E. Eiben,et al.  Grand Challenges for Evolutionary Robotics , 2014, Front. Robot. AI.

[79]  Kenneth O. Stanley,et al.  On the Performance of Indirect Encoding Across the Continuum of Regularity , 2011, IEEE Transactions on Evolutionary Computation.

[80]  Günter Rudolph,et al.  Theory of Evolutionary Algorithms: A Bird's Eye View , 1999, Theor. Comput. Sci..

[81]  E. Borenstein,et al.  The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes , 2006, Journal of evolutionary biology.

[82]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[83]  Wenguo Liu,et al.  Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents , 2012 .

[84]  George Kampis,et al.  Evolvability of Natural and Artificial Systems , 2011, FET.

[85]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[86]  John R. Koza,et al.  Human-competitive results produced by genetic programming , 2010, Genetic Programming and Evolvable Machines.

[87]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[88]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[89]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[90]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[91]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[92]  Thomas J. Nicholas,et al.  Tracking footprints of artificial selection in the dog genome , 2010, Proceedings of the National Academy of Sciences.

[93]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[94]  Zbigniew Michalewicz,et al.  Design by Evolution , 2008 .

[95]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[96]  Thomas Bartz-Beielstein,et al.  Efficient global optimization for combinatorial problems , 2014, GECCO.

[97]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[98]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[99]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Decision-Tree Induction , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[100]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .