Integrated robot task and motion planning in belief space

This work was supported in part by the NSF under Grant No. 1117325. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We also gratefully acknowledge support from ONR MURI grant N00014-09-1-1051, from AFOSR grant AOARD-104135 and from the Singapore Ministry of Education under a grant to the Singapore-MIT International Design Center. We thank Willow Garage for the use of the PR2 robot as part of the PR2 Beta Program.

[1]  Leslie Pack Kaelbling,et al.  DetH*: Approximate Hierarchical Solution of Large Markov Decision Processes , 2011, IJCAI.

[2]  Fahiem Bacchus,et al.  Extending the Knowledge-Based Approach to Planning with Incomplete Information and Sensing , 2004, ICAPS.

[3]  Scott Sanner,et al.  Symbolic Dynamic Programming for First-order POMDPs , 2010, AAAI.

[4]  Adelardo A. D. Medeiros,et al.  Representation of Odometry Errors on Occupancy Grids , 2008, ICINCO-RA.

[5]  Joel W. Burdick,et al.  Robotic motion planning in dynamic, cluttered, uncertain environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[7]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[8]  John Langford,et al.  Probabilistic Planning in the Graphplan Framework , 1999, ECP.

[9]  Leslie Pack Kaelbling,et al.  Manipulation with Multiple Action Types , 2012, ISER.

[10]  William D. Smart,et al.  A Scalable Method for Solving High-Dimensional Continuous POMDPs Using Local Approximation , 2010, UAI.

[11]  David Silver,et al.  Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Achieving Master Level Play in 9 × 9 Computer Go , 2022 .

[12]  Daniel Bryce,et al.  Planning Graph Heuristics for Belief Space Search , 2006, J. Artif. Intell. Res..

[13]  Kris K. Hauser,et al.  Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces , 2010, WAFR.

[14]  Leslie Pack Kaelbling,et al.  Collision-free state estimation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  Geoffrey A. Hollinger,et al.  HERB: a home exploring robotic butler , 2010, Auton. Robots.

[16]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[17]  Dejan Pangercic,et al.  Combining perception and knowledge processing for everyday manipulation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Stuart J. Russell,et al.  Combined Task and Motion Planning for Mobile Manipulation , 2010, ICAPS.

[19]  Leslie Pack Kaelbling,et al.  Hierarchical task and motion planning in the now , 2011, 2011 IEEE International Conference on Robotics and Automation.

[20]  Piergiorgio Bertoli,et al.  Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking , 2001, IJCAI.

[21]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[22]  Robert Givan,et al.  FF-Replan: A Baseline for Probabilistic Planning , 2007, ICAPS.

[23]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[24]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[25]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[26]  Siddhartha S. Srinivasa,et al.  A Planning Framework for Non-Prehensile Manipulation under Clutter and Uncertainty , 2012, Autonomous Robots.

[27]  Michael Beetz,et al.  Real-time perception-guided motion planning for a personal robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[29]  Thierry Siméon,et al.  The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty , 2007, Robotics: Science and Systems.

[30]  David Hsu,et al.  Motion planning under uncertainty for robotic tasks with long time horizons , 2010, Int. J. Robotics Res..

[31]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[32]  Robert C. Moore A Formal Theory of Knowledge and Action , 1984 .

[33]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[34]  Rachid Alami,et al.  A Hybrid Approach to Intricate Motion, Manipulation and Task Planning , 2009, Int. J. Robotics Res..

[35]  Gregory D. Hager,et al.  Sampling-Based Motion and Symbolic Action Planning with geometric and differential constraints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[36]  Pieter Abbeel,et al.  LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information , 2010, Int. J. Robotics Res..

[37]  Wolfram Burgard,et al.  OctoMap : A Probabilistic , Flexible , and Compact 3 D Map Representation for Robotic Systems , 2010 .

[38]  Mike Stilman,et al.  Hierarchical Decision Theoretic Planning for Navigation Among Movable Obstacles , 2012, WAFR.

[39]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[40]  Leslie Pack Kaelbling,et al.  Belief space planning assuming maximum likelihood observations , 2010, Robotics: Science and Systems.

[41]  Michael A. Erdmann,et al.  Using Backprojections for Fine Motion Planning with Uncertainty , 1986 .

[42]  Leslie Pack Kaelbling,et al.  Grasping POMDPs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[43]  G. Swaminathan Robot Motion Planning , 2006 .

[44]  Tran Cao Son,et al.  A State-Based Regression Formulation for Domains with Sensing Actions and Incomplete Information , 2006, Log. Methods Comput. Sci..

[45]  Sheila A. McIlraith,et al.  Generating Optimal Plans in Highly-Dynamic Domains , 2009, UAI.

[46]  Nicholas Roy,et al.  The Belief Roadmap: Efficient Planning in Linear POMDPs by Factoring the Covariance , 2007, ISRR.

[47]  Thierry Siméon,et al.  Manipulation Planning with Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[48]  Sheila A. McIlraith,et al.  Computing Robust Plans in Continuous Domains , 2009, ICAPS.

[49]  Ronen I. Brafman,et al.  Applications of a logic of knowledge to motion planning under uncertainty , 1997, JACM.

[50]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[51]  Nils J. Nilsson,et al.  TRIANGLE TABLES: A PROPOSAL FOR A ROBOT PROGRAMMING LANGUAGE , 1985 .

[52]  Michael Thielscher,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming Flux: a Logic Programming Method for Reasoning Agents , 2003 .

[53]  Leora Morgenstern,et al.  Knowledge Preconditions for Actions and Plans , 1988, IJCAI.

[54]  Roni Khardon,et al.  Relational Partially Observable MDPs , 2010, AAAI.

[55]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[56]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[57]  P. Abbeel,et al.  LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information , 2011 .

[58]  David Hsu,et al.  Planning under Uncertainty for Robotic Tasks with Mixed Observability , 2010, Int. J. Robotics Res..

[59]  Bruce Randall Donald,et al.  A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty , 1987, Artif. Intell..

[60]  Victor Ng-Thow-Hing,et al.  Randomized multi-modal motion planning for a humanoid robot manipulation task , 2011, Int. J. Robotics Res..

[61]  David Hsu,et al.  SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally Reachable Belief Spaces , 2008, Robotics: Science and Systems.

[62]  Bernhard Nebel,et al.  Integrating symbolic and geometric planning for mobile manipulation , 2009, 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR 2009).

[63]  James J. Kuffner,et al.  Planning Among Movable Obstacles with Artificial Constraints , 2008, WAFR.