Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments

We present a realtime virtual grasping algorithm to model interactions with virtual objects. Our approach is designed for multi-fingered hands and makes no assumptions about the motion of the user's hand or the virtual objects. Given a model of the virtual hand, we use machine learning and particle swarm optimization to automatically pre-compute stable grasp configurations for that object. The learning pre-computation step is accelerated using GPU parallelization. At runtime, we rely on the pre-computed stable grasp configurations, and dynamics/non-penetration constraints along with motion planning techniques to compute plausible looking grasps. In practice, our realtime algorithm can perform virtual grasping operations in less than 20ms for complex virtual objects, including high genus objects with holes. We have integrated our grasping algorithm with Oculus Rift HMD and Leap Motion controller and evaluated its performance for different tasks corresponding to grabbing virtual objects and placing them at arbitrary locations. Our user evaluation suggests that our virtual grasping algorithm can increase the user's realism and participation in these tasks and offers considerable benefits over prior interaction algorithms, such as pinch grasping and raycast picking.

[1]  Takeo Kanade,et al.  Automated Construction of Robotic Manipulation Programs , 2010 .

[2]  Van-Duc Nguyen,et al.  Constructing force-closure grasps , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[3]  Matei T. Ciocarlie,et al.  The Columbia grasp database , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  Gerd Hirzinger,et al.  Fast planning of precision grasps for 3D objects , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[5]  Ivan Poupyrev,et al.  The go-go interaction technique: non-linear mapping for direct manipulation in VR , 1996, UIST '96.

[6]  Michael Girard,et al.  Computer animation of knowledge-based human grasping , 1991, SIGGRAPH.

[7]  Kurt Keutzer,et al.  Fast support vector machine training and classification on graphics processors , 2008, ICML '08.

[8]  Peter K. Allen,et al.  An SVM learning approach to robotic grasping , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  Noel Lopes,et al.  Multi-threaded Support Vector Machines for Pattern Recognition , 2012, ICONIP.

[10]  Stan Sclaroff,et al.  Estimating 3D hand pose from a cluttered image , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[11]  Danica Kragic,et al.  Classical grasp quality evaluation: New algorithms and theory , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Ferran Argelaguet,et al.  The role of interaction in virtual embodiment: Effects of the virtual hand representation , 2016, 2016 IEEE Virtual Reality (VR).

[13]  Jinxiang Chai,et al.  Robust realtime physics-based motion control for human grasping , 2013, ACM Trans. Graph..

[14]  Christoph W. Borst,et al.  A Spring Model for Whole-Hand Virtual Grasping , 2006, Presence: Teleoperators & Virtual Environments.

[15]  Jiawei Li,et al.  On Computing Three-Finger Force-Closure Grasps , 2003 .

[16]  Ying Li,et al.  Data-Driven Grasp Synthesis Using Shape Matching and Task-Based Pruning , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[18]  Victor B. Zordan,et al.  Physically based grasping control from example , 2005, SCA '05.

[19]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[21]  T. Ichikawa,et al.  Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques , 1998, Comput. Graph. Forum.

[22]  Li-Yi Wei,et al.  Parallel white noise generation on a GPU via cryptographic hash , 2008, I3D '08.

[23]  Henrik I. Christensen,et al.  Automatic grasp planning using shape primitives , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  Aude Billard,et al.  Learning a real time grasping strategy , 2013, 2013 IEEE International Conference on Robotics and Automation.

[25]  P. Allen,et al.  Dexterous Grasping via Eigengrasps : A Low-dimensional Approach to a High-complexity Problem , 2007 .

[26]  Dinesh K. Pai,et al.  Interaction capture and synthesis , 2005, SIGGRAPH 2005.

[27]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[28]  Danica Kragic,et al.  Mind the gap - robotic grasping under incomplete observation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[29]  C. Karen Liu,et al.  Dextrous manipulation from a grasping pose , 2009, ACM Trans. Graph..

[30]  John F. Canny,et al.  Planning optimal grasps , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[31]  S. Sathiya Keerthi,et al.  Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.

[32]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[33]  Jun-Sik Kim,et al.  Physics-based hand interaction with virtual objects , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Doug A. Bowman,et al.  An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments , 1997, SI3D.

[35]  Christos H. Papadimitriou,et al.  Optimum Grip of a Polygon , 1987, Int. J. Robotics Res..

[36]  Anis Sahbani,et al.  On computing robust n-finger force-closure grasps of 3D objects , 2009, 2009 IEEE International Conference on Robotics and Automation.

[37]  Christoph W. Borst,et al.  Effects and optimization of visual-proprioceptive discrepancy reduction for virtual grasping , 2013, 2013 IEEE Symposium on 3D User Interfaces (3DUI).

[38]  Matei Ciocarlie,et al.  Low-dimensional robotic grasping: Eigengrasp subspaces and optimized underactuation , 2010 .

[39]  Gabriel Zachmann,et al.  Natural and Robust Interaction in Virtual Assembly Simulation , 2001 .

[40]  Miguel A. Otaduy,et al.  Interactive simulation of a deformable hand for haptic rendering , 2011, 2011 IEEE World Haptics Conference.

[41]  Daniel Thalmann,et al.  Multi-finger manipulation of virtual objects , 1996, VRST.

[42]  Peter K. Allen,et al.  Examples of 3D grasp quality computations , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[43]  Dinesh Manocha,et al.  GPU-based parallel collision detection for fast motion planning , 2012, Int. J. Robotics Res..

[44]  Timo Ropinski,et al.  Object Selection in Virtual Environments using an Improved Virtual Pointer Metaphor , 2004, ICCVG.

[45]  Bernd Kuhlenkötter,et al.  A Dynamic Time Warping algorithm for industrial robot motion analysis , 2016, 2016 Annual Conference on Information Science and Systems (CISS).

[46]  Franziska Zacharias,et al.  Object-Specific Grasp Maps for Use in Planning Manipulation Actions , 2009 .

[47]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[48]  George Drettakis,et al.  Finger-based manipulation in immersive spaces and the real world , 2015, 2015 IEEE Symposium on 3D User Interfaces (3DUI).

[49]  Maud Marchal,et al.  Aggregate Constraints for Virtual Manipulation with Soft Fingers , 2015, IEEE Transactions on Visualization and Computer Graphics.

[50]  David Kim,et al.  HoloDesk: direct 3d interactions with a situated see-through display , 2012, CHI.

[51]  C. Karen Liu,et al.  Synthesis of detailed hand manipulations using contact sampling , 2012, ACM Trans. Graph..

[52]  Dinesh Manocha,et al.  Efficient nearest-neighbor computation for GPU-based motion planning , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  Christoph W. Borst,et al.  Realistic virtual grasping , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[54]  Dinesh Manocha,et al.  Fast BVH Construction on GPUs , 2009, Comput. Graph. Forum.

[55]  Jovan Popović,et al.  Real-time hand-tracking with a color glove , 2009, SIGGRAPH 2009.

[56]  Stefan Ulbrich,et al.  The OpenGRASP benchmarking suite: An environment for the comparative analysis of grasping and dexterous manipulation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Dinesh K. Pai,et al.  Hands on: interactive animation of precision manipulation and contact , 2015, Symposium on Computer Animation.

[58]  Karun B. Shimoga,et al.  Robot Grasp Synthesis Algorithms: A Survey , 1996, Int. J. Robotics Res..