Gap Navigation Trees: Minimal Representation for Visibility-based Tasks

In this paper we present our advances in a data structure, the Gap Navigation Tree (GNT), useful for solving different visibility-based robotic tasks in unknown planar environments. We present its use for optimal robot navigation in simply-connected environments, locally optimal navigation in multiply-connected environments, pursuit-evasion, and robot localization. The guiding philosophy of this work is to avoid traditional problems such as complete map building and exact localization by constructing a minimal representation based entirely on critical events in online sensor measurements made by the robot. The data structure is introduced from an information space perspective, in which the information used among the different visibility-based tasks is essentially the same, and it is up to the robot strategy to use it accordingly for the completion of the particular task. This is done through a simple sensor abstraction that reports the discontinuities in depth information of the environment from the robot’s perspective (gaps), and without any kind of geometric measurements. The GNT framework was successfully implemented on a real robot platform.

[1]  Elon Rimon,et al.  Construction of C-space roadmaps from local sensory data. What should the sensors look for? , 1994, Algorithmica.

[2]  G. Swaminathan Robot Motion Planning , 2006 .

[3]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[4]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[5]  Leonidas J. Guibas,et al.  Visibility Queries in Simple Polygons and Applications , 1998, ISAAC.

[6]  Steven M. LaValle,et al.  Optimal navigation and object finding without geometric maps or localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[8]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[9]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 2001, IEEE Trans. Robotics Autom..

[10]  Kevin W. Bowyer,et al.  Aspect graphs: An introduction and survey of recent results , 1990, Int. J. Imaging Syst. Technol..

[11]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[12]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[13]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[14]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[15]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[16]  Kyung-Yong Chwa,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher , 2001, ICALP.

[17]  Gregory Dudek,et al.  Localizing a robot with minimum travel , 1995, SODA '95.

[18]  Steven M. LaValle,et al.  Locally-optimal navigation in multiply-connected environments without geometric maps , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[19]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[20]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[21]  Frédo Durand,et al.  3d visibility: analytical study and applications , 1999 .

[22]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[23]  Steven M. LaValle,et al.  Pursuit-evasion in an unknown environment using gap navigation trees , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[24]  Jon M. Kleinberg,et al.  The localization problem for mobile robots , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[25]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[26]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[27]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[28]  M. Yamashita,et al.  On-Line Polygon Search by a Six-State Boundary 1-Searcher , 2003 .

[29]  Mihalis Yannakakis,et al.  Shortest Paths Without a Map , 1989, Theor. Comput. Sci..

[30]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion in an Unknown Planar Environment , 2004, Int. J. Robotics Res..

[31]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, IEEE J. Robotics Autom..

[32]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[33]  Steven M. LaValle,et al.  A pursuit-evasion BUG algorithm , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).