Towards group transport by swarms of robots

We examine the ability of a swarm robotic system to transport cooperatively objects of different shapes and sizes. We simulate a group of autonomous mobile robots that can physically connect to each other and to the transported object. Controllers – artificial neural networks – are synthesised by an evolutionary algorithm. They are trained to let the robots self-assemble, that is, organise into collective physical structures and transport the object towards a target location. We quantify the performance and the behaviour of the group. We show that the group can cope fairly well with objects of different geometries as well as with sudden changes in the target location. Moreover, we show that larger groups, which are made of up to 16 robots, make possible the transport of heavier objects. Finally, we discuss the limitations of the system in terms of task complexity, scalability and fault tolerance and point out potential directions for future research.

[1]  C. Coulomb Théorie des machines simples (Nouv. éd.) / , en ayant égard au frottement de leurs parties et à la roideur des cordages, par C.-A. Coulomb,... Nouvelle édition... , 1821 .

[2]  C. Coulomb Théorie des machines simples, en ayant égard au frottement de leurs parties et a la roideur des cordages , 1968 .

[3]  Matthew T. Mason,et al.  Mechanics and Planning of Manipulator Pushing Operations , 1986 .

[4]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[5]  John S. Bay,et al.  Toward the development of a material transport system using swarms of ant-like robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[6]  Hong Zhang,et al.  Collective Robotics: From Social Insects to Robots , 1993, Adapt. Behav..

[7]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[8]  Kazuhiro Kosuge,et al.  Decentralized control of multiple robots handling an object , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[9]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[10]  C. Ronald Kube,et al.  Task Modelling in Collective Robotics , 1997, Auton. Robots.

[11]  Kazuhiro Kosuge,et al.  Transportation of a single object by two decentralized-controlled nonholonomic mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Lynne E. Parker,et al.  Adaptive heterogeneous multi-robot teams , 1998, Neurocomputing.

[13]  Eiichi Yoshida,et al.  Self-assembly and self-repair method for a distributed mechanical system , 1999, IEEE Trans. Robotics Autom..

[14]  Jun Ota,et al.  Cooperative transportation by two four-legged robots with implicit communication , 1999, Robotics Auton. Syst..

[15]  Eric Bonabeau,et al.  Cooperative transport by ants and robots , 2000, Robotics Auton. Syst..

[16]  Pradeep K. Khosla,et al.  Towards a Team of Robots with Repair Capabilities: A Visual Docking System , 2000, ISER.

[17]  Seiji Yamada,et al.  Adaptive action selection without explicit communication for multirobot box-pushing , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[18]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[19]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[20]  Marco Dorigo,et al.  Evolving a Cooperative Transport Behavior for Two Simple Robots , 2003, Artificial Evolution.

[21]  Marco Dorigo,et al.  Cooperative Transport of Objects of Different Shapes and Sizes , 2004, ANTS Workshop.

[22]  Vijay Kumar,et al.  Decentralized Algorithms for Multi-Robot Manipulation via Caging , 2004, Int. J. Robotics Res..

[23]  Marco Dorigo,et al.  Group Transport of an Object to a Target That Only Some Group Members May Sense , 2004, PPSN.

[24]  Marco Dorigo,et al.  Swarm Robotics: Special Issue Editorial , 2004 .

[25]  H. Markl,et al.  Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera) , 1978, Behavioral Ecology and Sociobiology.

[26]  Kazuhiro Kosuge,et al.  A pushing leader based decentralized control method for cooperative object transportation , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[27]  B. Hölldobler,et al.  Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera) , 1978, Behavioral Ecology and Sociobiology.

[28]  N. Franks Teams in social insects: group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae) , 1986, Behavioral Ecology and Sociobiology.

[29]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[30]  Aude Billard,et al.  Evolving Functional Self-Assembling in a Swarm of Autonomous Robots , 2004 .

[31]  Luca Maria Gambardella,et al.  The SWARM-BOTS Project , 2004, Künstliche Intell..

[32]  Francesco Mondada,et al.  Superlinear Physical Performances in a SWARM-BOT , 2005, ECAL.

[33]  Luca Maria Gambardella,et al.  The cooperation of swarm-bots: physical interactions in collective robotics , 2005, IEEE Robotics & Automation Magazine.

[34]  Rolf Pfeifer,et al.  How the Body Shapes the Way We Think: A New View of Intelligence (Bradford Books) , 2006 .

[35]  Francesco Mondada,et al.  Performance benefits of self-assembly in a swarm-bot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Mauro Birattari,et al.  Fault detection in autonomous robots based on fault injection and learning , 2008, Auton. Robots.

[37]  Marco Dorigo,et al.  Self-Assembly at the Macroscopic Scale , 2008, Proceedings of the IEEE.

[38]  Marco Dorigo,et al.  Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling , 2008, Adapt. Behav..

[39]  Marco Dorigo,et al.  Self-Assembly in Physical Autonomous Robots - the Evolutionary Robotics Approach , 2008, ALIFE.

[40]  Marco Dorigo,et al.  From Fireflies to Fault-Tolerant Swarms of Robots , 2009, IEEE Transactions on Evolutionary Computation.