A unified Bayesian framework for global localization and SLAM in hybrid metric/topological maps

We present a unified filtering framework for hybrid metric/topological robot global localization and SLAM. At a high level, our method relies on a topological graph representation whose vertices define uniquely identifiable places in the environment and whose edges define feasible paths between them. At a low level, our method generalizes to any detailed metric submapping technique. The filtering framework we present is designed for multi-hypothesis estimation in order to account for ambiguity when closing loops and to account for uniform uncertainty when initializing pose estimates. Our implementation tests multiple topological hypotheses through the incremental construction of a hypothesis forest with each leaf representing a possible graph/state pair at the current time step. Instead of using a heuristic approach to accept or reject hypotheses, we propose a novel Bayesian method that computes the posterior probability of each hypothesis. In addition, for every topological hypothesis, a metric estimate is maintained with a local Kalman filter. Careful pruning of the hypothesis forest keeps the growing number of hypotheses under control while a garbage-collector hypothesis is used as a catch-all for pruned hypotheses. This enables the filter to recover from unmodeled disturbances such as the kidnapped robot problem.

[1]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[3]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[4]  Howie Choset,et al.  A multi-hypothesis topological SLAM approach for loop closing on edge-ordered graphs , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[6]  Benjamin Kuipers,et al.  Loop-closing and planarity in topological map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[7]  Howie Choset,et al.  Hybrid localization using the hierarchical atlas , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Frédéric Maire,et al.  Topological SLAM Using Fast Vision Techniques , 2009, FIRA RoboWorld Congress.

[9]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[10]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[13]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[14]  David J. Austin,et al.  Hybrid topological/metric approach to SLAM , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Howie Choset,et al.  The hierarchical atlas , 2005, IEEE Transactions on Robotics.

[16]  Howie Choset,et al.  Iterated filters for bearing-only SLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[18]  Gregory Dudek,et al.  Pure Topological Mapping in Mobile Robotics , 2010, IEEE Transactions on Robotics.

[19]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: a natural integration of topological and metric , 2003, Robotics Auton. Syst..

[20]  Gregory Dudek,et al.  Mapping in unknown graph-like worlds , 1996 .

[21]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[22]  Javier Civera,et al.  Unified Inverse Depth Parametrization for Monocular SLAM , 2006, Robotics: Science and Systems.

[23]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[24]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[25]  Jean-Arcady Meyer,et al.  Incremental vision-based topological SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[27]  Javier Civera,et al.  Inverse Depth to Depth Conversion for Monocular SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[28]  H. Akaike A new look at the statistical model identification , 1974 .

[29]  Howie Choset,et al.  A Single-Step Maximum A Posteriori Update for Bearing-Only SLAM , 2010, AAAI.

[30]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[31]  Howie Choset,et al.  Sensor Based Planing, Part II: Incremental COnstruction of the Generalized Voronoi Graph , 1995, ICRA.

[32]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[33]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[34]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[35]  Frédéric Maire,et al.  Topological SLAM using neighbourhood information of places , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[37]  Gregory Dudek,et al.  Using Local Information in a Non-Local Way for Mapping Graph-Like Worlds , 1993, IJCAI.

[38]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[39]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[40]  Frank Dellaert,et al.  Online probabilistic topological mapping , 2011, Int. J. Robotics Res..

[41]  Noah J. Cowan,et al.  Toward SLAM on Graphs , 2008, WAFR.

[42]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[43]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[44]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[45]  Emanuele Menegatti,et al.  Bayesian inference in the space of topological maps , 2006, IEEE Transactions on Robotics.

[46]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[47]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[48]  Javier González,et al.  A New Approach for Large-Scale Localization and Mapping: Hybrid Metric-Topological SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[49]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[50]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[51]  Javier González,et al.  Toward a Unified Bayesian Approach to Hybrid Metric--Topological SLAM , 2008, IEEE Transactions on Robotics.

[52]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.