An Alternative Theory of Binocularity

The fact that seeing with two eyes is universal among vertebrates raises a problem that has long challenged vision scientists: how do animals with overlapping visual fields combine non-identical right and left eye images to achieve fusion and the perception of depth that follows? Most theories address this problem in terms of matching corresponding images on the right and left retinas. Here we suggest an alternative theory of binocular vision based on anatomical correspondence that circumvents the correspondence problem and provides a rationale for ocular dominance.

[1]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[2]  Nava Rubin,et al.  Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance. , 2010, Journal of vision.

[3]  Patricia M. Cisarik,et al.  The Effects of Interocular Correlation and Contrast on Stereoscopic Depth Magnitude Estimation , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[4]  S. R. Lehky An Astable Multivibrator Model of Binocular Rivalry , 1988, Perception.

[5]  Dennis M Levi,et al.  Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model. , 2013, Journal of vision.

[6]  Zhaoping Li,et al.  Towards a theory of striate cortex , 1994 .

[7]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[8]  P. O. Bishop,et al.  Analysis of retinal correspondence by studying receptive fields of rinocular single units in cat striate cortex , 2004, Experimental Brain Research.

[9]  Mathias Bode,et al.  Lateral Neural Model of Binocular Rivalry , 2003, Neural Computation.

[10]  Hugh R Wilson,et al.  Computational evidence for a rivalry hierarchy in vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Qi Zhang,et al.  The thermal signature of a submerged jet impacting normal to a free surface , 2016, J. Vis..

[12]  Bruce G. Cumming,et al.  Adaptation to Natural Binocular Disparities in Primate V1 Explained by a Generalized Energy Model , 2008, Neuron.

[13]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[14]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[15]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[16]  Peter Dayan,et al.  A Hierarchical Model of Binocular Rivalry , 1998, Neural Computation.

[17]  Dale Purves Brains as Engines of Association: An Operating Principle for Nervous Systems , 2019 .

[18]  R. Hess,et al.  Interocular correlation sensitivity and its relationship with stereopsis , 2018, Journal of vision.

[19]  A. Welchman,et al.  “What Not” Detectors Help the Brain See in Depth , 2017, Current Biology.

[20]  Peter J. Burt,et al.  Computer Simulations of a Dynamic Visual Perception Model , 1975, Int. J. Man Mach. Stud..

[21]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[22]  Charles Wheatstone On some remarkable and hitherto unobserved phenomena of binocular vision. , 1962 .

[23]  Jiawei Zhou,et al.  Linear binocular combination of responses to contrast modulation: contrast-weighted summation in first- and second-order vision. , 2014, Journal of vision.

[24]  Bruce G. Cumming,et al.  A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms , 2016, PLoS Comput. Biol..

[25]  J. C. Gardner,et al.  Ocular dominance and disparity-sensitivity: why there are cells in the visual cortex driven unequally by the two eyes , 2004, Experimental Brain Research.

[26]  Cherlyn J. Ng,et al.  Network Connections That Evolve to Circumvent the Inverse Optics Problem , 2013, PloS one.

[27]  Stephen Grossberg,et al.  Stereo boundary fusion by cortical complex cells: A system of maps, filters, and feedback networks for multiplexing distributed data , 1989, Neural Networks.

[28]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[29]  H. Smallman,et al.  Size-disparity correlation in stereopsis at contrast threshold. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Dale Purves,et al.  Properties of artificial neurons that report lightness based on accumulated experience with luminance , 2014, Front. Comput. Neurosci..

[32]  Zhaoping Li,et al.  Efficient stereo coding in the multiscale representation , 1994 .

[33]  Gian F. Poggio,et al.  Mechanisms of stereopsis in monkey visual cortex , 1979, Trends in Neurosciences.

[34]  T. Mueller A physiological model of binocular rivalry , 1990, Visual Neuroscience.

[35]  Hiroki Tanaka,et al.  Neural Basis for Stereopsis from Second-Order Contrast Cues , 2006, The Journal of Neuroscience.

[36]  B G Cumming,et al.  Disparity Detection in Anticorrelated Stereograms , 1998, Perception.

[37]  C. Schor,et al.  Disparity range for local stereopsis as a function of luminance spatial frequency , 1983, Vision Research.

[38]  Bruce G Cumming,et al.  Neurons in Striate Cortex Signal Disparity in Half-Matched Random-Dot Stereograms , 2016, The Journal of Neuroscience.

[39]  Bruce G Cumming,et al.  A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images , 2002, Visual Neuroscience.

[40]  Takahiro Doi,et al.  Matching and correlation computations in stereoscopic depth perception. , 2011, Journal of vision.

[41]  Charles Wheatstone,et al.  I. The Bakerian Lecture.— Contributions to the physiology of vision.— Part the second. On some remarkable, and hitherto unobserved, phenomena of binocular vision (continued) , 1852, Philosophical Transactions of the Royal Society of London.

[42]  Colin Blakemore,et al.  Probing the human stereoscopic system with reverse correlation , 1999, Nature.

[43]  J I Nelson,et al.  Globality and stereoscopic fusion in binocular vision. , 1975, Journal of theoretical biology.

[44]  David J. Heeger,et al.  A Model of Binocular Rivalry and Cross-orientation Suppression , 2013, PLoS Comput. Biol..

[45]  N. Qian Binocular Disparity and the Perception of Depth , 1997, Neuron.

[46]  Gordon E. Legge,et al.  Binocular contrast summation—II. Quadratic summation , 1984, Vision Research.

[47]  Bruce G Cumming,et al.  Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1. , 2004, Journal of neurophysiology.

[48]  A. V. Smirnov,et al.  Visualization of arc and plasma flow patterns for advanced material processing , 2015, J. Vis..

[49]  Ning Qian,et al.  Physiological computation of binocular disparity , 1997, Vision Research.

[50]  W Richards,et al.  Effects of luminance and contrast on processing large disparities. , 1974, Journal of the Optical Society of America.

[51]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[52]  D. Purves,et al.  Iterated patterns of brain circuitry (or how the cortex gets its spots) , 1992, Trends in Neurosciences.

[53]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[54]  Bruce G Cumming,et al.  The psychophysics of stereopsis can be explained without invoking independent ON and OFF channels , 2019, Journal of vision.

[55]  A. Parker,et al.  Range and mechanism of encoding of horizontal disparity in macaque V1. , 2002, Journal of neurophysiology.

[56]  S. M. Williams,et al.  Central Visual Pathways , 2001 .

[57]  Bruce G Cumming,et al.  Mechanisms Underlying the Transformation of Disparity Signals from V1 to V2 in the Macaque , 2008, The Journal of Neuroscience.

[58]  W Richards,et al.  Local versus global stereopsis: two mechanisms? , 1974, Vision research.

[59]  J P Frisby,et al.  The Computation of Binocular Edges , 1980, Perception.

[60]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[61]  Bruce Bridgeman,et al.  Why We See What We Do Redux: A Wholly Empirical Theory of Vision. By Dale Purves and R. Beau Lotto. Sunderland (Massachusetts): Sinauer Associates. $59.95 (paper). xii + 262 p.; ill.; index. ISBN: 978-0-87893-596-3. 2011. , 2012 .

[62]  Bevil R. Conway,et al.  Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1 , 2003, Neuron.

[63]  Alan W Freeman,et al.  Multistage model for binocular rivalry. , 2005, Journal of neurophysiology.

[64]  George Sperling,et al.  A gain-control theory of binocular combination. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Charles Wheatstone,et al.  Contributions to the Physiology of Vision. , 1837 .

[66]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[67]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[68]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  Jenny Read,et al.  Spatial Stereoresolution for Depth Corrugations May Be Set in Primary Visual Cortex , 2011, BMC Neuroscience.

[70]  A. Parker,et al.  Receptive Field Size in V1 Neurons Limits Acuity for Perceiving Disparity Modulation , 2004, The Journal of Neuroscience.

[71]  D. Purves,et al.  How biological vision succeeds in the physical world , 2014, Proceedings of the National Academy of Sciences.

[72]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[73]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[74]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[75]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[76]  H. K. Nishihara,et al.  Practical Real-Time Imaging Stereo Matcher , 1984 .

[77]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.