Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks

Increasingly many wireless sensor network deployments are using harvested environmental energy to extend system lifetime. Because the temporal profiles of such energy sources exhibit great variability due to dynamic weather patterns, an important problem is designing an adaptive duty-cycling mechanism that allows sensor nodes to maintain their power supply at sufficient levels (energy neutral operation) by adapting to changing environmental conditions. Existing techniques to address this problem are minimally adaptive and assume a priori knowledge of the energy profile. While such approaches are reasonable in environments that exhibit low variance, we find that it is highly inefficient in more variable scenarios. We introduce a new technique for solving this problem based on results from adaptive control theory and show that we achieve better performance than previous approaches on a broader class of energy source data sets. Additionally, we include a tunable mechanism for reducing the variance of the node's duty cycle over time, which is an important feature in tasks such as event monitoring. We obtain reductions in variance as great as two-thirds without compromising task performance or ability to maintain energy neutral operation.

[1]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[2]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[3]  Jan M. Rabaey,et al.  Energy aware routing for low energy ad hoc sensor networks , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[4]  Mohamed F. Younis,et al.  Energy-aware routing in cluster-based sensor networks , 2002, Proceedings. 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems.

[5]  Karthik Dantu,et al.  Lifetime prediction routing in mobile ad hoc networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[6]  A. Kansal,et al.  An environmental energy harvesting framework for sensor networks , 2003, Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03..

[7]  Hartmut Ritter,et al.  Utilizing solar power in wireless sensor networks , 2003, 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings..

[8]  Gaurav S. Sukhatme,et al.  Studying the feasibility of energy harvesting in a mobile sensor network , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[9]  David E. Culler,et al.  Versatile low power media access for wireless sensor networks , 2004, SenSys '04.

[10]  Mani B. Srivastava,et al.  Performance aware tasking for environmentally powered sensor networks , 2004, SIGMETRICS '04/Performance '04.

[11]  David E. Culler,et al.  Design of a wireless sensor network platform for detecting rare, random, and ephemeral events , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[12]  David E. Culler,et al.  Perpetual environmentally powered sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[13]  Mani B. Srivastava,et al.  Power management in energy harvesting sensor networks , 2007, TECS.