Different Roles for Simple-Cell and Complex-Cell Inhibition in V1

Previously, we proposed a model of the circuitry underlying simple-cell responses in cat primary visual cortex (V1) layer 4. We argued that the ordered arrangement of lateral geniculate nucleus inputs to a simple cell must be supplemented by a component of feedforward inhibition that is untuned for orientation and responds to high temporal frequencies to explain the sharp contrast-invariant orientation tuning and low-pass temporal frequency tuning of simple cells. The temporal tuning also requires a significant NMDA component in geniculocortical synapses. Recent experiments have revealed cat V1 layer 4 inhibitory neurons with two distinct types of receptive fields (RFs): complex RFs with mixed ON/OFF responses lacking in orientation tuning, and simple RFs with normal, sharp-orientation tuning (although, some respond to all orientations). We show that complex inhibitory neurons can provide the inhibition needed to explain simple-cell response properties. Given this complex cell inhibition, antiphase or “push-pull” inhibition from tuned simple inhibitory neurons acts to sharpen spatial frequency tuning, lower responses to low temporal frequency stimuli, and increase the stability of cortical activity.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[3]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[4]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[5]  A. Fuchs,et al.  Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. , 1979, The Journal of physiology.

[6]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of Neurophysiology.

[7]  S. Sherman,et al.  Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat. , 1980, Journal of neurophysiology.

[8]  R. Holub,et al.  Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. , 1981, Journal of neurophysiology.

[9]  R. Shapley,et al.  Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. , 1981, Journal of neurophysiology.

[10]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[11]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .

[12]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[13]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[14]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  H. Swadlow,et al.  Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal. , 1987, Journal of neurophysiology.

[16]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[17]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[18]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[19]  D. Whitteridge,et al.  Evidence for the connections between a clutch cell and a corticotectal neuron in area 17 of the cat visual cortex , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  H. Swadlow Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties. , 1988, Journal of neurophysiology.

[22]  K D Miller,et al.  Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Swadlow Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. , 1989, Journal of neurophysiology.

[24]  N. Daw,et al.  The location and function of NMDA receptors in cat and kitten visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[26]  D. Ferster X- and Y-mediated current sources in areas 17 and 18 of cat visual cortex , 1990, Visual Neuroscience.

[27]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[28]  H. Swadlow Efferent neurons and suspected interneurons in S-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. , 1990, Journal of neurophysiology.

[29]  D Ferster,et al.  X- and Y-mediated synaptic potentials in neurons of areas 17 and 18 of cat visual cortex , 1990, Visual Neuroscience.

[30]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[31]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  H. Swadlow,et al.  Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties. , 1991, Journal of neurophysiology.

[33]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  A. L. Humphrey,et al.  Temporal-frequency tuning of direction selectivity in cat visual cortex , 1992, Visual Neuroscience.

[35]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[36]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[37]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[38]  H. Swadlow Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. , 1994, Journal of neurophysiology.

[39]  L. Benardo,et al.  Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. , 1995, Journal of neurophysiology.

[40]  Earl L. Smith,et al.  Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. , 1995, Journal of neurophysiology.

[41]  E. Kaplan,et al.  Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. , 1995, Journal of neurophysiology.

[42]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[43]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  D. G. Albrecht Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions , 1995, Visual Neuroscience.

[45]  H. Swadlow,et al.  Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. , 1995, Journal of neurophysiology.

[46]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[47]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[48]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[49]  Z. Gil,et al.  Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. , 1996, Journal of neurophysiology.

[50]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[51]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[52]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[53]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[54]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[56]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[57]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[58]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[59]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[60]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[61]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[62]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[63]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[64]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[65]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[66]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[68]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[69]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[70]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[71]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[72]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[73]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[74]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[75]  K. Miller,et al.  Electronic Mail: , 2001 .

[76]  K. Miller,et al.  Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning , 2001, Nature Neuroscience.

[77]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[78]  Yang Dan,et al.  Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections , 2002, Neuron.

[79]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[80]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[81]  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[82]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[84]  K. Miller,et al.  Opponent Inhibition A Developmental Model of Layer 4 of the Neocortical Circuit , 2002, Neuron.

[85]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[86]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[87]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[88]  H. Sompolinsky,et al.  Mexican hats and pinwheels in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[90]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[91]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[92]  D. Whitteridge,et al.  Physiological and morphological properties of identified basket cells in the cat's visual cortex , 2004, Experimental Brain Research.

[93]  G. Sclar,et al.  Expression of “retinal” contrast gain control by neurons of the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[94]  Yuzo M. Chino,et al.  Transfer characteristics of lateral geniculate nucleus X-neurons in the cat: effects of temporal frequency , 2004, Experimental Brain Research.

[95]  M. Wright,et al.  Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex , 1975, Experimental Brain Research.