Group-theoretical vector space model

This paper presents a group-theoretical vector space model (VSM) that extends the VSM with a group action on a vector space of the VSM. We use group and its representation theory to represent a dynamic transformation of information objects, in which each information object is represented by a vector in a vector space of the VSM. Several groups and their matrix representations are employed for representing different kinds of dynamic transformations of information objects used in the VSM. We provide concrete examples of how a dynamic transformation of information objects is performed and discuss algebraic properties involving certain dynamic transformations of information objects used in the VSM.

[1]  H. Anton Elementary Linear Algebra , 1970 .

[2]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[3]  E. Chisholm,et al.  New Term Weighting Formulas for the Vector Space Method in Information Retrieval , 1999 .

[4]  W. Marsden I and J , 2012 .

[5]  Dominic Widdows,et al.  Geometry and Meaning , 2004, Computational Linguistics.

[6]  Jonathan L. Alperin,et al.  Groups and Representations , 1995 .

[7]  Vijay V. Raghavan,et al.  Vector Space Model of Information Retrieval - A Reevaluation , 1984, SIGIR.

[8]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[9]  David Filliat,et al.  A visual bag of words method for interactive qualitative localization and mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[11]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[12]  John M. Lee Introduction to Topological Manifolds , 2000 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Massimo Melucci,et al.  A basis for information retrieval in context , 2008, TOIS.

[15]  R. Carter Lie Groups , 1970, Nature.

[16]  O. Bretscher Linear Algebra with Applications , 1996 .

[17]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[18]  Xiang Li,et al.  New Feature Selection and Weighting Methods Based on Category Information , 2004, ICADL.

[19]  S. S. Culbert,et al.  Cognition and Categorization , 1979 .

[20]  J. Rotman An Introduction to the Theory of Groups , 1965 .

[21]  Eduard Hoenkamp,et al.  Unitary Operators on the Document Spac , 2003, J. Assoc. Inf. Sci. Technol..

[22]  Janet Aisbett,et al.  A general formulation of conceptual spaces as a meso level representation , 2001, Artif. Intell..

[23]  Pi-Lian He,et al.  An improved term weighting scheme for vector space model , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[24]  Edward Grefenstette,et al.  Category-theoretic quantitative compositional distributional models of natural language semantics , 2013, ArXiv.

[25]  Christian H. Bischof,et al.  The WY representation for products of householder matrices , 1985, PPSC.

[26]  Jaime Delgado,et al.  A Vector Space Model for Semantic Similarity Calculation and OWL Ontology Alignment , 2006, DEXA.

[27]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[28]  Byron J. Gao,et al.  Adapting vector space model to ranking-based collaborative filtering , 2012, CIKM.

[29]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[30]  Dohan Kim,et al.  Representations of task assignments in distributed systems using Young tableaux and symmetric groups , 2010, Int. J. Parallel Emergent Distributed Syst..

[31]  Richard Johnsonbaugh,et al.  Foundations of mathematical analysis , 1981 .

[32]  John B. Fraleigh A first course in abstract algebra , 1967 .

[33]  Tihomir Car Lectures on Physics , 2013 .

[34]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[35]  András A. Benczúr,et al.  Web spam filtering in internet archives , 2009, AIRWeb '09.

[36]  R. Tennant Algebra , 1941, Nature.

[37]  S. Clark,et al.  A Compositional Distributional Model of Meaning , 2008 .

[38]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[39]  Dik Lun Lee,et al.  Document Ranking and the Vector-Space Model , 1997, IEEE Softw..

[40]  Arthur Beiser,et al.  Concepts of modern physics , 1965 .

[41]  Anna Gkatzioura,et al.  Design and Implementation of a Customer Personalised Recomender System , 2013 .

[42]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[43]  Mohamed Tmar,et al.  A New Relevance Feedback Algorithm Based on Vector Space Basis Change , 2014, CICLing.

[44]  Kanti B. Datta,et al.  Matrix and linear algebra , 1991 .

[45]  James Richard Curran,et al.  From distributional to semantic similarity , 2004 .

[46]  Dunja Mladenic,et al.  Visualization of Text Document Corpus , 2005, Informatica.

[47]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[48]  Pavel Zezula,et al.  Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.

[49]  W. Lowe,et al.  Towards a Theory of Semantic Space , 2001 .

[50]  John D. McGregor,et al.  Domain * , 2004, J. Object Technol..

[51]  B. Sagan The Symmetric Group , 2001 .

[52]  Mohamed Tmar,et al.  An Optimal Context for Information Retrieval , 2014, AAIM.

[53]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[54]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics , 1998 .

[55]  P. Kanerva,et al.  Permutations as a means to encode order in word space , 2008 .

[56]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[57]  K. Latha,et al.  An Efficient LSI based Information Retrieval Framework using Particle swarm optimization and simulated annealing approach , 2008, 2008 16th International Conference on Advanced Computing and Communications.

[58]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[59]  Massimo Melucci Modeling Retrieval and Navigation in Context , 2008, Information Access through Search Engines and Digital Libraries.

[60]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[61]  Susan T. Dumais,et al.  Improving the retrieval of information from external sources , 1991 .

[62]  Edward A. Fox,et al.  Digital Libraries: International Collaboration and Cross-Fertilization , 2008 .

[63]  Ilmério Reis da Silva,et al.  Dependence among terms in vector space model , 2004, Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS '04..

[64]  Elizabeth R. Jessup,et al.  Matrices, Vector Spaces, and Information Retrieval , 1999, SIAM Rev..

[65]  Cristina Ribeiro,et al.  Term weighting based on document revision history , 2011, J. Assoc. Inf. Sci. Technol..

[66]  S. Lane Categories for the Working Mathematician , 1971 .

[67]  Peter D. Turney Domain and Function: A Dual-Space Model of Semantic Relations and Compositions , 2012, J. Artif. Intell. Res..

[68]  Susan T. Dumais,et al.  Leveraging temporal dynamics of document content in relevance ranking , 2010, WSDM '10.

[69]  Massimo Melucci Context modeling and discovery using vector space bases , 2005, CIKM '05.