Computational insights into human perceptual expertise for familiar and unfamiliar face recognition

[1]  M. Behrmann,et al.  Exemplar learning reveals the representational origins of expert category perception , 2020, Proceedings of the National Academy of Sciences.

[2]  David White,et al.  Familiarity does not inhibit image-specific encoding of faces. , 2019, Journal of experimental psychology. Human perception and performance.

[3]  G. Yovel,et al.  Critical features for face recognition , 2019, Cognition.

[4]  Marlene Behrmann,et al.  Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by EEG , 2018, NeuroImage.

[5]  N. Kanwisher,et al.  How face perception unfolds over time , 2018, Nature Communications.

[6]  Andrew W. Young,et al.  The limits of expertise in face recognition : Response to Mackenzie Sunday and Isabel Gauthier: Face expertise for unfamiliar faces: A commentary on Young and Burton’s “Are we Face Experts?" , 2018 .

[7]  Amanda K. Robinson,et al.  Distinct neural processes for the perception of familiar versus unfamiliar faces along the visual hierarchy revealed by frequency tagging , 2018, Journal of Vision.

[8]  Bruno Rossion,et al.  Humans Are Visual Experts at Unfamiliar Face Recognition , 2018, Trends in Cognitive Sciences.

[9]  Swami Sankaranarayanan,et al.  Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms , 2018, Proceedings of the National Academy of Sciences.

[10]  A. Young,et al.  Understanding face familiarity , 2018, Cognition.

[11]  A. Young,et al.  Are We Face Experts? , 2018, Trends in Cognitive Sciences.

[12]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[13]  Omkar M. Parkhi,et al.  VGGFace2: A Dataset for Recognising Faces across Pose and Age , 2017, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[14]  Bhiksha Raj,et al.  SphereFace: Deep Hypersphere Embedding for Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Carlos D. Castillo,et al.  L2-constrained Softmax Loss for Discriminative Face Verification , 2017, ArXiv.

[16]  A. Young,et al.  Robust social categorization emerges from learning the identities of very few faces. , 2017, Psychological review.

[17]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  S. Zafeiriou,et al.  Feature-Based Lucas–Kanade and Active Appearance Models , 2015, IEEE Transactions on Image Processing.

[20]  Martin A. Riedmiller,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[21]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[22]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[23]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[24]  Naphtali Abudarham,et al.  Reverse engineering the face space: Discovering the critical features for face identification. , 2014, Journal of vision.

[25]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[26]  Yejin Choi,et al.  From Large Scale Image Categorization to Entry-Level Categories , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  Honglak Lee,et al.  Learning to Align from Scratch , 2012, NIPS.

[30]  A. Burton,et al.  Variability in photos of the same face , 2011, Cognition.

[31]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[32]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[33]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Ahmed M. Megreya,et al.  Unfamiliar faces are not faces: Evidence from a matching task , 2006, Memory & cognition.

[35]  M. Behrmann,et al.  Congenital prosopagnosia: face-blind from birth , 2005, Trends in Cognitive Sciences.

[36]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[37]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[38]  Paul Miller,et al.  Verification of face identities from images captured on video. , 1999 .

[39]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[40]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[41]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[42]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[43]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[44]  J. Brigham,et al.  Cross-Racial Identification , 1989 .

[45]  T. Valentine Upside-down faces: a review of the effect of inversion upon face recognition. , 1988, British journal of psychology.

[46]  A. Young,et al.  Configurational Information in Face Perception , 1987, Perception.

[47]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[48]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[49]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[50]  A. Jung Gradient-Based Learning , 2022, Machine Learning: Foundations, Methodologies, and Applications.

[51]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[52]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[53]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[54]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.