Power delivery and locomotion of untethered micro-actuators

This paper presents a micro-actuator that operates free of any physically restraining tethers. We show how capacitive coupling can be used to deliver power to MEMS devices, independently of the position and orientation of those devices. Then, we provide a simple mechanical release process for detaching MEMS devices from the fabrication substrate once chemical processing is complete. To produce these untethered micro-actuators in a batch-compatible manner while leveraging existing MEMS infrastructure, we have devised a novel post-processing sequence for the PolyMUMPS process. Through the use of this sequence, we show how to add, post hoc, a layer of dielectric between two previously-deposited polysilicon films. We have demonstrated the effectiveness of these techniques through the successful fabrication and operation of untethered scratch drive actuators. Locomotion of these actuators is controlled by frequency modulation, and the devices achieve speeds of over 1.5 mm/sec.

[1]  I. Shimoyama,et al.  Insect-model based microrobot with elastic hinges , 1994 .

[2]  Paolo Dario,et al.  Microactuators for microrobots: a critical survey , 1992 .

[3]  Bruce Randall Donald,et al.  Vector fields for task-level distributed manipulation: experiments with organic micro actuator arrays , 1997, Proceedings of International Conference on Robotics and Automation.

[4]  Isao Shimoyama,et al.  Insect-model based microrobot , 1997, Robotics Auton. Syst..

[5]  Deepak Uttamchandani,et al.  Detailed study of scratch drive actuator characteristics using high-speed imaging , 2001, SPIE MOEMS-MEMS.

[6]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[7]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[8]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[9]  Luigi Fortuna,et al.  Development of autonomous, mobile micro-electro-mechanical devices , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[10]  George M. Whitesides,et al.  Meso-scale self-assembly , 2001 .

[11]  D. Collard,et al.  A large stepwise motion electrostatic actuator for a wireless microrobot , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[12]  David A. Koester,et al.  MEMS infrastructure: the multiuser MEMS processes (MUMPs) , 1995, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[13]  S. Ghandhi VLSI fabrication principles : sil-icon and gallium arsenide , 1994 .

[14]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[15]  Bruce Randall Donald,et al.  Fully programmable MEMS ciliary actuator arrays for micromanipulation tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Luigi Fortuna,et al.  Technologies and architectures for autonomous "MEMS" microrobots , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[17]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[18]  Bruce Randall Donald,et al.  Sensorless manipulation using massively parallel microfabricated actuator arrays , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Hiroyuki Fujita,et al.  CAD modeling of scratch drive actuation , 2000, Other Conferences.

[20]  Akihiro Torii,et al.  An Analysis of the Elastic Deformation of an Electrostatic Microactuator , 1998 .

[21]  Shigeoki Hirai,et al.  Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[23]  Isao Shimoyama,et al.  Microrobot actuated by a vibration energy field , 1994 .

[24]  N. C. MacDonald,et al.  Single-crystal silicon actuator arrays for micro manipulation tasks , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[25]  Robert Fitch,et al.  Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting , 2002 .

[26]  J. Lang,et al.  An electrostatic induction micromotor supported on gas-lubricated bearings , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[27]  J. K. Srivastava,et al.  Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy , 1987 .

[28]  Hiroyuki Fujita,et al.  Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS , 1997 .

[29]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[30]  Gregory T. A. Kovacs,et al.  OMNIDIRECTIONAL WALKING MICROROBOT REALIZED BY THERMAL MICROACTUATOR ARRAYS , 2001 .

[31]  Hiroyuki Fujita,et al.  A quantitative analysis of scratch drive actuation for integrated X/Y motion system , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[32]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[33]  Terunobu Akiyama,et al.  Controlled stepwise motion in polysilicon microstructures , 1993 .

[34]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[35]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.