A principle of economy predicts the functional architecture of grid cells

Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. DOI: http://dx.doi.org/10.7554/eLife.08362.001

[1]  L. Rayleigh,et al.  The theory of sound , 1894 .

[2]  A. Stokes,et al.  Studies on Home Range in the Brown Rat , 1948 .

[3]  H. Fitch Habits and economic relationships of the Tulare kangaroo rat. , 1948, Journal of mammalogy.

[4]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[5]  W. Stickel,et al.  A Sigmodon and Baiomys population in ungrazed and unburned Texas prairie. , 1949, Journal of mammalogy.

[6]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[7]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[8]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[9]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[10]  Norman A. Slade,et al.  Home Range Indices for the Hispid Cotton Rat (Sigmodon hispidus) in Northeastern Kansas , 1983 .

[11]  Suzanne E. Braun Home Range and Activity Patterns of the Giant Kangaroo Rat, Dipodomys ingens , 1985 .

[12]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Richard Granger,et al.  A cortical model of winner-take-all competition via lateral inhibition , 1992, Neural Networks.

[14]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[15]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[16]  M J West,et al.  Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat , 1997, The Journal of comparative neurology.

[17]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[18]  Wolfgang Maass,et al.  On the Computational Power of Winner-Take-All , 2000, Neural Computation.

[19]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[21]  Matthias Bethge,et al.  Optimal Short-Term Population Coding: When Fisher Information Fails , 2002, Neural Computation.

[22]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[23]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[24]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[25]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[26]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[27]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[28]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[29]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[30]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[31]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[32]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[33]  Ila R Fiete,et al.  What Grid Cells Convey about Rat Location , 2008, The Journal of Neuroscience.

[34]  William W Lytton,et al.  Unmasking the CA1 Ensemble Place Code by Exposures to Small and Large Environments: More Place Cells and Multiple, Irregularly Arranged, and Expanded Place Fields in the Larger Space , 2008, The Journal of Neuroscience.

[35]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[36]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[37]  Yoram Burak,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2008, PLoS Comput. Biol..

[38]  J. Lisman,et al.  The Input–Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields , 2009, The Journal of Neuroscience.

[39]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[40]  P. Dudchenko The hippocampus as a cognitive map , 2010 .

[41]  E. Moser,et al.  A manifold of spatial maps in the brain , 2010, Trends in Cognitive Sciences.

[42]  K. Jeffery,et al.  Anisotropic encoding of three-dimensional space by place cells and grid cells , 2011, Nature Neuroscience.

[43]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[44]  Ila Fiete,et al.  Grid cells generate an analog error-correcting code for singularly precise neural computation , 2011, Nature Neuroscience.

[45]  Lisa M. Giocomo,et al.  Grid Cells Use HCN1 Channels for Spatial Scaling , 2011, Cell.

[46]  M. Yartsev,et al.  Grid cells without theta oscillations in the entorhinal cortex of bats , 2011, Nature.

[47]  Martin Stemmler,et al.  Optimal Population Codes for Space: Grid Cells Outperform Place Cells , 2012, Neural Computation.

[48]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[49]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[50]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[51]  J. O’Keefe,et al.  Neural Representations of Location Composed of Spatially Periodic Bands , 2012, Science.

[52]  Alexander Mathis,et al.  Resolution of nested neuronal representations can be exponential in the number of neurons. , 2012, Physical review letters.

[53]  M. Stemmler,et al.  Multiscale codes in the nervous system: the problem of noise correlations and the ambiguity of periodic scales. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[55]  Nachum Ulanovsky,et al.  Representation of Three-Dimensional Space in the Hippocampus of Flying Bats , 2013, Science.

[56]  Larry R Squire,et al.  Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. , 2014, Cell reports.

[57]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[58]  Albert K. Lee,et al.  Large environments reveal the statistical structure governing hippocampal representations , 2014, Science.

[59]  Neil Burgess,et al.  Optimal configurations of spatial scale for grid cell firing under noise and uncertainty , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  Neil Burgess,et al.  What do grid cells contribute to place cell firing? , 2014, Trends in Neurosciences.

[61]  Yasser Roudi,et al.  Correlations and Functional Connections in a Population of Grid Cells , 2014, PLoS Comput. Biol..

[62]  Do the spatial frequencies of grid cells mold the firing fields of place cells? , 2015, Proceedings of the National Academy of Sciences.

[63]  S. Leutgeb,et al.  Spatial and memory circuits in the medial entorhinal cortex , 2015, Current Opinion in Neurobiology.

[64]  B. McNaughton,et al.  Place field expansion after focal MEC inactivations is consistent with loss of Fourier components and path integrator gain reduction , 2015, Proceedings of the National Academy of Sciences.

[65]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .