Data-driven biped control

We present a dynamic controller to physically simulate under-actuated three-dimensional full-body biped locomotion. Our data-driven controller takes motion capture reference data to reproduce realistic human locomotion through realtime physically based simulation. The key idea is modulating the reference trajectory continuously and seamlessly such that even a simple dynamic tracking controller can follow the reference trajectory while maintaining its balance. In our framework, biped control can be facilitated by a large array of existing data-driven animation techniques because our controller can take a stream of reference data generated on-the-fly at runtime. We demonstrate the effectiveness of our approach through examples that allow bipeds to turn, spin, and walk while steering its direction interactively.

[1]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[2]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[3]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[4]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[5]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[6]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[7]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[8]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[9]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[10]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[11]  Jun Morimoto,et al.  Minimax differential dynamic programming: application to a biped walking robot , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[12]  Kazuhito Yokoi,et al.  Generating whole body motions for a biped humanoid robot from captured human dances , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[14]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[16]  Jun Morimoto,et al.  Learning from demonstration and adaptation of biped locomotion , 2004, Robotics Auton. Syst..

[17]  Taishin Nomura,et al.  Stumbling with optimal phase reset during gait can prevent a humanoid from falling , 2006, Biological Cybernetics.

[18]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[19]  Jun-Ho Oh,et al.  Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor , 2007, J. Intell. Robotic Syst..

[20]  Kwang Won Sok,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[21]  Jehee Lee Representing Rotations and Orientations in Geometric Computing , 2008, IEEE Computer Graphics and Applications.

[22]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[23]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[24]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[25]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[26]  Philippe Beaudoin,et al.  Synthesis of constrained walking skills , 2008, SIGGRAPH Asia '08.

[27]  Zoran Popovic,et al.  Optimal gait and form for animal locomotion , 2009, ACM Trans. Graph..

[28]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, ACM Trans. Graph..

[29]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[30]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[31]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, ACM Trans. Graph..

[32]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[33]  Jehee Lee,et al.  Synchronized multi-character motion editing , 2009, ACM Trans. Graph..

[34]  Tong-Yee Lee,et al.  Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model , 2010, IEEE Transactions on Visualization and Computer Graphics.