Neural mechanisms and computational principles of adaptive sensory processing

In this chapter, we investigate the computational role of the local recurrent network in primary visual cortex. To address this issue, we analyze intracellular recording data of cat V1, which combinemeasuring the tuning of a range of neuronal properties with a precise localization of the recording sites in the orientation preference map. For the analysis, we consider a network model of Hodgkin-Huxley type neurons arranged according to a biologically plausible two-dimensional topographic orientation preference map. We then systematically vary the strength of the recurrent excitation and inhibition relative to the strength of the afferent input. Each parametrization gives rise to a different model instance for which the tuning of model neurons at different locations of the orientation map is compared to the experimentally measured orientation tuning of membrane potential, spike output, excitatory, and inhibitory conductances. A quantitative analysis shows that the data provides strong evidence for a network model in which the afferent input is dominated by strong, balanced contributions of recurrent excitation and inhibition. This recurrent regime is close to a regime of “instability”, where strong, self-sustained activity of the network occurs. The firing rate of neurons in the best-fitting network is particularly sensitive to modulation, which could be one of the functional benefits of a network operating in this particular regime.

[1]  H Spekreijse,et al.  A Neural Correlate of Working Memory in the Monkey Primary Visual Cortex , 2001, Science.

[2]  Risto Miikkulainen,et al.  Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex , 2000, Neural Computation.

[3]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[5]  R. M. Hennig Ascending auditory interneurons in the cricketTeleogryllus commodus (Walker): comparative physiology and direct connections with afferents , 1988, Journal of Comparative Physiology A.

[6]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[7]  Y Chen,et al.  Modeling V1 disparity tuning to time-varying stimuli. , 2001, Journal of neurophysiology.

[8]  I. Nelken,et al.  Processing of complex stimuli and natural scenes in the auditory cortex , 2004, Current Opinion in Neurobiology.

[9]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[10]  R. Reid,et al.  The processing and encoding of information in the visual cortex , 1996, Current Opinion in Neurobiology.

[11]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[12]  A. Grinvald,et al.  Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing , 2002, Science.

[13]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[14]  K. Obermayer,et al.  Contrast Adaptation and Infomax in Visual Cortical Neurons , 1999, Reviews in the neurosciences.

[15]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[16]  M. Webster,et al.  Adaptation to natural facial categories , 2002 .

[17]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[18]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[19]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[20]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[21]  Judith A Hirsch,et al.  Laminar processing in the visual cortical column , 2006, Current Opinion in Neurobiology.

[22]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[23]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[24]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[25]  Jan Benda,et al.  Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron , 2008, Journal of Computational Neuroscience.

[26]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[27]  F. Huber,et al.  Sound localisation in crickets , 1994, Journal of Comparative Physiology A.

[28]  U. Eysel,et al.  Topography of orientation centre connections in the primary visual cortex of the cat , 2001, Neuroreport.

[29]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[30]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[31]  E. Marder,et al.  How Multiple Conductances Determine Electrophysiological Properties in a Multicompartment Model , 2009, The Journal of Neuroscience.

[32]  G. Pollack,et al.  Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. , 2002, Journal of neurophysiology.

[33]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[34]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[35]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[36]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[37]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[39]  Alan A. Stocker,et al.  Sensory Adaptation within a Bayesian Framework for Perception , 2005, NIPS.

[40]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[41]  Klaus Obermayer,et al.  Adaptation and Selective Information Transmission in the Cricket Auditory Neuron AN2 , 2008, PLoS Comput. Biol..

[42]  Valentin Dragoi,et al.  Asymmetric synaptic depression in cortical networks. , 2008, Cerebral cortex.

[43]  Maria V. Sanchez-Vives,et al.  Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. , 2008, Cerebral cortex.

[44]  Gary Marsat,et al.  A Behavioral Role for Feature Detection by Sensory Bursts , 2006, The Journal of Neuroscience.

[45]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[46]  Eve Marder,et al.  Structure and visualization of high-dimensional conductance spaces. , 2006, Journal of neurophysiology.

[47]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[48]  Peter E. Latham,et al.  Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't , 2008, PLoS Comput. Biol..

[49]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[50]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.

[51]  R. Shapley,et al.  Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. , 2003, Journal of neurophysiology.

[52]  H. Römer,et al.  A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae) , 2000, Journal of Comparative Physiology A.

[53]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[54]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[55]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[56]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[57]  Valentin Dragoi,et al.  Adaptive coding of visual information in neural populations , 2008, Nature.

[58]  H. Sompolinsky,et al.  Mexican hats and pinwheels in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[60]  Franz Huber,et al.  Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket,Gryllus campestris L. , 1982, Journal of comparative physiology.

[61]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[62]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[63]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[64]  Maria V. Sanchez-Vives,et al.  Impact of cortical network activity on short-term synaptic depression. , 2006, Cerebral cortex.

[65]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[66]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[67]  D. Butts,et al.  Tuning Curves, Neuronal Variability, and Sensory Coding , 2006, PLoS biology.

[68]  H. Spitzer,et al.  A complex-cell receptive-field model. , 1985, Journal of neurophysiology.

[69]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[70]  R. Vogels,et al.  Population coding of stimulus orientation by striate cortical cells , 1990, Biological Cybernetics.

[71]  E. Marder,et al.  How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks. , 2007, Progress in brain research.

[72]  M. Carandini,et al.  Neuronal Selectivity and Local Map Structure in Visual Cortex , 2008, Neuron.

[73]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[74]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[75]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[76]  M. Webster,et al.  Visual adaptation: Neural, psychological and computational aspects , 2007, Vision Research.

[77]  Klaus Obermayer,et al.  Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1 , 2008, NIPS.

[78]  G. Pollack,et al.  Selective attention in an insect auditory neuron , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  D. Tolhurst,et al.  Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1) , 2003, Vision Research.

[80]  G S Pollack,et al.  Sensory habituation of auditory receptor neurons: implications for sound localization. , 2000, The Journal of experimental biology.

[81]  Cyrille C. Girardin,et al.  Cooling in cat visual cortex: stability of orientation selectivity despite changes in responsiveness and spike width , 2009, Neuroscience.

[82]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[83]  A. T. Smith,et al.  Motion after-effects in cat striate cortex elicited by moving gratings , 2004, Experimental Brain Research.

[84]  Klaus Obermayer,et al.  The operating regime of local computations in primary visual cortex. , 2009, Cerebral cortex.

[85]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[86]  Shinji Nishimoto,et al.  Accuracy of subspace mapping of spatiotemporal frequency domain visual receptive fields. , 2005, Journal of neurophysiology.

[87]  Ruben Martins,et al.  Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species , 2007, Journal of Experimental Biology.

[88]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[89]  Ranulfo Romo,et al.  across cortical areas Inaugural Article: Neural correlate of subjective sensory experience gradually builds up , 2006 .

[90]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[91]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[92]  R. V. Novikova,et al.  Dynamics of orientation tuning in the cat striate cortex neurons , 1993, Neuroscience.

[93]  Klaus Obermayer,et al.  Adaptivity of Tuning Functions in a Generic Recurrent Network Model of a Cortical Hypercolumn , 2005, The Journal of Neuroscience.

[94]  Klaus Obermayer,et al.  Dynamics of Orientation Tuning in Cat V1 Neurons Depend on Location Within Layers and Orientation Maps , 2007, Front. Neurosci..

[95]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[96]  H. Seung,et al.  Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex. , 2005, Journal of neurophysiology.

[97]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[98]  D. Tolhurst,et al.  Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes , 2000, Vision Research.

[99]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[100]  P. Lennie Receptive fields , 2003, Current Biology.

[101]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[102]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[104]  Christian K. Machens,et al.  Testing the Efficiency of Sensory Coding with Optimal Stimulus Ensembles , 2005, Neuron.

[105]  N. Qian,et al.  Learning and adaptation in a recurrent model of V1 orientation selectivity. , 2003, Journal of neurophysiology.

[106]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[107]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[108]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[109]  Kenneth D. Miller,et al.  Adaptive filtering enhances information transmission in visual cortex , 2006, Nature.

[110]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[111]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[112]  E. Miller,et al.  Dynamics of neuronal sensitivity in visual cortex and local feature discrimination , 2002, Nature Neuroscience.

[113]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[114]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[115]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[116]  Daniel L. Schacter,et al.  V1 Neurons Signal Acquisition of an Internal Representation of Stimulus Location , 2003 .

[117]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[118]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[119]  Yang Dan,et al.  Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections , 2002, Neuron.

[120]  Daniel A Butts,et al.  How much information is associated with a particular stimulus? , 2003, Network.

[121]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[122]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[123]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[124]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[125]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[126]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[127]  Y. Dan,et al.  Stimulation of non‐classical receptive field enhances orientation selectivity in the cat , 2005, The Journal of physiology.

[128]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[130]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[131]  K. Nakayama,et al.  PSYCHOLOGICAL SCIENCE Research Article FITTING THE MIND TO THE WORLD: Face Adaptation and Attractiveness Aftereffects , 2022 .

[132]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[133]  W. Newsome,et al.  Estimates of the Contribution of Single Neurons to Perception Depend on Timescale and Noise Correlation , 2009, The Journal of Neuroscience.

[134]  G. Rhodes,et al.  Fitting the Mind to the World: Adaptation and after-effects in high-level vision , 2005 .

[135]  Derek H. Arnold,et al.  Orthogonal adaptation improves orientation discrimination , 2001, Vision Research.

[136]  M. Mascagni,et al.  Numerical Methods for Neuronal Modeling 14.1 Introduction , 1989 .

[137]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[138]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[139]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[140]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[141]  C. Clifford Perceptual adaptation: motion parallels orientation , 2002, Trends in Cognitive Sciences.

[142]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[143]  Ning Qian,et al.  Comparison among some models of orientation selectivity. , 2006, Journal of neurophysiology.

[144]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[145]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[146]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[147]  R. Hoy,et al.  Initiation of behavior by single neurons: the role of behavioral context. , 1984, Science.

[148]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[149]  I. Nelken,et al.  Representation of Tone in Fluctuating Maskers in the Ascending Auditory System , 2005, The Journal of Neuroscience.

[150]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[151]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[152]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[153]  R. Shapley,et al.  Information Tuning of Populations of Neurons in Primary Visual Cortex , 2004, The Journal of Neuroscience.

[154]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[155]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[156]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[157]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[158]  T R Vidyasagar,et al.  Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex , 1995, Visual Neuroscience.

[159]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[160]  Mriganka Sur,et al.  Local networks in visual cortex and their influence on neuronal responses and dynamics , 2004, Journal of Physiology-Paris.

[161]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[162]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[163]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[164]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[165]  J. Touryan,et al.  Contextual modulation of orientation tuning contributes to efficient processing of natural stimuli , 2005, Network.

[166]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[167]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[168]  J. Movshon,et al.  Adaptation changes the direction tuning of macaque MT neurons , 2004, Nature Neuroscience.

[169]  Gal Chechik,et al.  Reduction of Information Redundancy in the Ascending Auditory Pathway , 2006, Neuron.

[170]  D. Mitchell,et al.  Does the tilt after-effect occur in the oblique meridian? , 1976, Vision Research.

[171]  Mriganka Sur,et al.  Image Structure at the Center of Gaze during Free Viewing , 2006, Journal of Cognitive Neuroscience.

[172]  Israel Nelken,et al.  Responses of auditory-cortex neurons to structural features of natural sounds , 1999, Nature.

[173]  J. Gibson,et al.  Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies , 1937 .

[174]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[175]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[176]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[177]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[178]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[179]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[180]  J. B. Levitt,et al.  A model for the intracortical origin of orientation preference and tuning in macaque striate cortex , 1999, Visual Neuroscience.

[181]  Terrence J. Sejnowski,et al.  Perceived luminance depends on temporal context , 2004, Nature.

[182]  Klaus Obermayer,et al.  Modeling the adaptive visual system: a survey of principled approaches , 2003, Neural Networks.

[183]  C. Clifford,et al.  A functional angle on some after-effects in cortical vision , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[184]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[185]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[186]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[187]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[188]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[189]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[190]  C. Blakemore,et al.  The perceived spatial frequency shift: evidence for frequency‐selective neurones in the human brain , 1970, The Journal of physiology.

[191]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[192]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[193]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[194]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[195]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[196]  S. Nelson,et al.  The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. , 2003, Journal of neurophysiology.

[197]  M. Carandini,et al.  Visual cortex: Fatigue and adaptation , 2000, Current Biology.

[198]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[199]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[200]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[201]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[202]  Michael A. Webster,et al.  Neural adjustments to image blur , 2010 .

[203]  D. Ringach,et al.  The Operating Point of the Cortex: Neurons as Large Deviation Detectors , 2007, The Journal of Neuroscience.

[204]  R. Sekuler,et al.  Adaptation alters perceived direction of motion , 1976, Vision Research.