A Toolchain for the Design and Simulation of Foldable Programmable Matter

This paper presents a toolchain for the design and simulation of reconfigurable robots that can be built from a single rigid sheet of smart material with embedded actuators and sensors along regular crease patterns. We call such sheets Foldable Programmable Matter (FPM ). The toolchain we have created comprises an editor for drafting or modifying FPM , including locations and angles for folds. Algorithms for generating a class of folding structures are available for use. Also included is a dynamic simulation of the fold process, which provides collision detection and visualization. Thus our Foldable Programmable Matter Editor allows us to synthesize and design FPMs and simulate them in a virtual environment before committing to manufacture. The toolchain also incorporates a method of strength analysis, which is used to determine the suitability of a folded shape for specific loadings. Examples are shown for each subsection, including a beam example spanning the toolchain.Copyright © 2010 by ASME

[1]  Jeffrey C. Trinkle,et al.  Motion Planning for a Class of Planar Closed-chain Manipulators , 2007, Int. J. Robotics Res..

[2]  Mark Yim,et al.  Telecubes: mechanical design of a module for self-reconfigurable robotics , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[3]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[4]  Ileana Streinu,et al.  A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[5]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[7]  Eric Klavins,et al.  Programmable parts: a demonstration of the grammatical approach to self-organization , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jeffrey C. Trinkle,et al.  Complete Path Planning for Closed Kinematic Chains with Spherical Joints , 2002, Int. J. Robotics Res..

[9]  J. O'Rourke,et al.  Geometric Folding Algorithms: Linkages , 2007 .

[10]  G. Barbastathis,et al.  Kinematics and Dynamics of Nanostructured Origami , 2005 .

[11]  Ronald S. Fearing,et al.  DASH: A dynamic 16g hexapedal robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[13]  Erik D. Demaine,et al.  An energy-driven approach to linkage unfolding , 2004, SCG '04.

[14]  Mark Yim,et al.  Right Angle Tetrahedron Chain Externally-Actuated Testbed (RATChET): A Shape-Changing System , 2009 .

[15]  Hod Lipson,et al.  Stochastic self-reconfigurable cellular robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  Christian Laugier,et al.  The International Journal of Robotics Research (IJRR) - Special issue on ``Field and Service Robotics '' , 2009 .

[17]  P. Breedveld,et al.  Modeling of elastically coupled bodies : Part i-General theory and geometric potential function method , 1998 .

[18]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[19]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[20]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[21]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[22]  R. Lang Origami Design Secrets: Mathematical Methods for an Ancient Art , 2003 .

[23]  Robert J. Wood,et al.  A review of actuation and power electronics options for flapping-wing robotic insects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[25]  David Johan Christensen,et al.  Selecting a meta-module to shape-change the ATRON self-reconfigurable robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[26]  Henrik Hautop Lund,et al.  Modular ATRON: modules for a self-reconfigurable robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[27]  Bruno Siciliano,et al.  Quaternion-based impedance with nondiagonal stiffness for robot manipulators , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[28]  Ileana Streinu,et al.  Single-Vertex Origami and Spherical Expansive Motions , 2004, JCDCG.

[29]  Mark Yim,et al.  Strength analysis of miniature folded right angle tetrahedron chain Programmable Matter , 2010, 2010 IEEE International Conference on Robotics and Automation.

[30]  R. Fearing,et al.  Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[31]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[32]  Seth Copen Goldstein,et al.  Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[34]  Jeffrey C. Trinkle,et al.  Motion planning for planar n-bar mechanisms with revolute joints , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[35]  David A. Huffman,et al.  Curvature and Creases: A Primer on Paper , 1976, IEEE Transactions on Computers.

[36]  Shilong Zhang,et al.  A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge , 2001 .

[37]  Tien,et al.  Forming electrical networks in three dimensions by self-assembly , 2000, Science.

[38]  Nancy M. Amato,et al.  Planning with Reachable Distances: Fast Enforcement of Closure Constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[39]  Lydia E. Kavraki,et al.  A probabilistic roadmap approach for systems with closed kinematic chains , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[40]  Jeffrey C. Trinkle,et al.  Toward Complete Path Planning for Planar 3R-Manipulators Among Point Obstacles , 2004, WAFR.

[41]  Devin J. Balkcom,et al.  Robotic origami folding , 2008, Int. J. Robotics Res..

[42]  Mark Yim,et al.  Reliable External Actuation for Full Reachability in Robotic Modular Self-reconfiguration , 2010, Int. J. Robotics Res..

[43]  Ernest D. Fasse,et al.  Spatial Compliance Modeling Using a Quaternion-Based Potential Function Method , 2000 .

[44]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[45]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[46]  Ileana Streinu,et al.  Flattening single-vertex origami: The non-expansive case , 2010, Comput. Geom..

[47]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.