Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments

We present an approach for navigating in unknown environments while, simultaneously, gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV). To accomplish this, we first use our pipeline for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction pipeline to create a photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment over time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting inspection missions in a challenging, real-world and natural scenario.

[1]  Eduard Vidal,et al.  Online path planning for autonomous underwater vehicles in unknown environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Fabio Bruno,et al.  3D documentation and monitoring of the experimental cleaning operations in the underwater archaeological site of Baia (Italy) , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[3]  N. Cavan Reconstruction of 3D Points From Uncalibrated Underwater Video , 2011 .

[4]  Michael Goesele,et al.  Let There Be Color! Large-Scale Texturing of 3D Reconstructions , 2014, ECCV.

[5]  X. Cufi,et al.  Calibration of optical camera coupled to acoustic multibeam for underwater 3D scene reconstruction , 2010, OCEANS'10 IEEE SYDNEY.

[6]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[7]  Simon Fuhrmann,et al.  MVE - An image-based reconstruction environment , 2015, Comput. Graph..

[8]  Lionel Moisan,et al.  Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers , 2012, Image Process. Line.

[9]  Changchang Wu,et al.  SiftGPU : A GPU Implementation of Scale Invariant Feature Transform (SIFT) , 2007 .

[10]  Andreas Birk,et al.  Plane-based registration of sonar data for underwater 3D mapping , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[12]  Pedro J. Sanz,et al.  An open source tool for simulation and supervision of underwater intervention missions , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Changchang Wu,et al.  Critical Configurations for Radial Distortion Self-Calibration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  M. Carreras,et al.  Mapping the Moon: Using a lightweight AUV to survey the site of the 17th century ship ‘La Lune’ , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[15]  Marc Pierrot Deseilligny B.1 MicMac, un logiciel pour la mise en correspondance automatique d'images dans le contexte géographique , 2007 .

[16]  Young-Hoo Kwon,et al.  Object Plane Deformation Due to Refraction in Two-Dimensional Underwater Motion Analysis , 1999 .

[17]  Erica Nocerino,et al.  Dense image matching: Comparisons and analyses , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[18]  Franc Solina,et al.  The impact of the latest 3D technologies on the documentation of underwater heritage sites , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[19]  Mariette Yvinec,et al.  A surface reconstruction method for in-detail underwater 3D optical mapping , 2015, Int. J. Robotics Res..

[20]  Stefan B. Williams,et al.  True Color Correction of Autonomous Underwater Vehicle Imagery , 2016, J. Field Robotics.

[21]  David M. Lane,et al.  Multiresolution 3-D Reconstruction From Side-Scan Sonar Images , 2007, IEEE Transactions on Image Processing.

[22]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[23]  P. Ridao,et al.  COLA2: A Control Architecture for AUVs , 2012, IEEE Journal of Oceanic Engineering.

[24]  H. Singh,et al.  Advances in large-area photomosaicking underwater , 2004, IEEE Journal of Oceanic Engineering.

[25]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[26]  Stefan B. Williams,et al.  Automated registration for multi-year robotic surveys of marine benthic habitats , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Pere Ridao,et al.  Toward Autonomous Exploration in Confined Underwater Environments , 2016, J. Field Robotics.

[28]  Louis L. Whitcomb,et al.  Underwater robotics: out of the research laboratory and into the field , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[29]  Brian Bingham,et al.  Techniques for Deep Sea Near Bottom Survey Using an Autonomous Underwater Vehicle , 2007, Int. J. Robotics Res..

[30]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[31]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[32]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[33]  Natalia Gawlik 3D modelling of underwater archaeological artefacts , 2014 .

[34]  Pere Ridao,et al.  Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints , 2016, Sensors.

[35]  Rafael García,et al.  Surface reconstruction methods for the recovery of 3D models from underwater interest areas , 2011, OCEANS 2011 IEEE - Spain.

[36]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[37]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[38]  Rafael Garcia,et al.  Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep‐sea hydrothermal field derived from seafloor image mosaics , 2012 .

[39]  Richard Szeliski,et al.  Image mosaicing for tele-reality applications , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[40]  O. Pizarro,et al.  Automated species detection: An experimental approach to kelp detection from sea-oor AUV images , 2012 .

[41]  R. García,et al.  Large-Area Photo-Mosaics Using Global Alignment and Navigation Data , 2007, OCEANS 2007.

[42]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[44]  Dana R. Yoerger,et al.  Fine-scale seafloor survey in rugged deep-ocean terrain with an autonomous robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[45]  I. K. E. Purnama,et al.  UNDERWATER IMAGE ENHANCEMENT USING ADAPTIVE FILTERING FOR ENHANCED SIFT-BASED IMAGE MATCHING , 2013 .

[46]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[47]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[48]  Stefan B. Williams,et al.  Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV) , 2012 .

[49]  Kostas E. Bekris,et al.  Greedy but Safe Replanning under Kinodynamic Constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[50]  David J. Kriegman,et al.  Automated annotation of coral reef survey images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[52]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[53]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Rafael García,et al.  Image-Based Coral Reef Classification and Thematic Mapping , 2013, Remote. Sens..

[55]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[56]  Narcís Palomeras,et al.  Coverage Path Planning with Real‐time Replanning and Surface Reconstruction for Inspection of Three‐dimensional Underwater Structures using Autonomous Underwater Vehicles , 2015, J. Field Robotics.

[57]  Rafael Garcia,et al.  Automated classification and thematic mapping of bacterial mats in the North Sea , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[58]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[59]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[60]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[61]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[62]  Riccardo Roncella,et al.  A comparison of semiglobal and local dense matching algorithms for surface reconstruction , 2014 .

[63]  Jules S. Jaffe,et al.  Computer modeling and the design of optimal underwater imaging systems , 1990 .

[64]  Pere Ridao,et al.  Autonomous Seabed Inspection for Environmental Monitoring , 2015, ROBOT.

[65]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[66]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[67]  K. Wenzel,et al.  A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs , 2013 .

[68]  Lino Marques,et al.  Robots for Environmental Monitoring: Significant Advancements and Applications , 2012, IEEE Robotics & Automation Magazine.

[69]  Rafael Garcia,et al.  Fast topology estimation for image mosaicing using adaptive information thresholding , 2013, Robotics Auton. Syst..

[70]  Hanumant Singh,et al.  Using the Seabed AUV to Assess Populations of Groundfish in Untrawlable Areas , 2009 .

[71]  G. Bianco,et al.  A COMPARISON BETWEEN ACTIVE AND PASSIVE TECHNIQUES FOR UNDERWATER 3D APPLICATIONS , 2012 .

[72]  G. Eberli,et al.  Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida , 2006 .

[73]  Livio De Luca,et al.  Automated Image-Based Procedures for Accurate Artifacts 3D Modeling and Orthoimage Generation , 2011 .

[74]  M. Pierrot-Deseilligny,et al.  A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH : AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT 5-HRS STEREO IMAGERY , 2006 .

[75]  Gabriel Oliver,et al.  Optical Sensors and Methods for Underwater 3D Reconstruction , 2015, Sensors.

[76]  Shahriar Negahdaripour,et al.  Efficient three‐dimensional scene modeling and mosaicing , 2009, J. Field Robotics.

[77]  R. Prados,et al.  A Novel Blending Technique for Underwater Gigamosaicing , 2012, IEEE Journal of Oceanic Engineering.

[78]  O. Delaunoy,et al.  Towards Detecting Changes in Underwater Image Sequences , 2008, OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean.