Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest

This chapter presents an innovative framework for the application of machine learning and data analytics for the identification of alloys or composites exhibiting certain desired properties of interest. The main focus is on alloys and composites with large composition spaces for structural materials. Such alloys or composites are referred to as high-entropy materials (HEMs) and are here presented primarily in context of structural applications. For each output property of interest, the corresponding driving (input) factors are identified. These input factors may include the material composition, heat treatment, manufacturing process, microstructure, temperature, strain rate, environment, or testing mode. The framework assumes the selection of an optimization technique suitable for the application at hand and the data available. Physics-based models are presented, such as for predicting the ultimate tensile strength (UTS) or fatigue resistance. We devise models capable of accounting for physics-based dependencies. We factor such dependencies into the models as a priori information. In case that an artificial neural network (ANN) is deemed suitable for the applications at hand, it is suggested to employ custom kernel functions consistent with the underlying physics, for the purpose of attaining tighter coupling, better prediction, and for extracting the most out of the - usually limited - input data available.

[1]  D. E. Helling,et al.  A creep-rupture model for two-phase eutectic solders , 1988 .

[2]  Jack Beuth,et al.  Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process using a Trained Computer Vision Algorithm , 2018 .

[3]  William A. Curtin,et al.  Solute strengthening in random alloys , 2017 .

[4]  Muhammad Siddique,et al.  Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy , 2013 .

[5]  Ke An,et al.  Phase‐Transformation Ductilization of Brittle High‐Entropy Alloys via Metastability Engineering , 2017, Advanced materials.

[6]  Reinhold H. Dauskardt,et al.  The fatigue endurance limit of a Zr-based bulk metallic glass , 2006 .

[7]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[8]  Bin Yang,et al.  Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance , 2018 .

[9]  Harold Mindlin,et al.  Aerospace structural metals handbook , 1995 .

[10]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[11]  Wei Jiang,et al.  Application of Onsager's variational principle to the dynamics of a solid toroidal island on a substrate , 2018, Acta Materialia.

[12]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[13]  Yoon Suk Choi,et al.  Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy , 2017 .

[14]  S. A. Shevchik,et al.  In Situ Quality Monitoring in AM Using Acoustic Emission: A Reinforcement Learning Approach , 2018, Journal of Materials Engineering and Performance.

[15]  Junqi Yin,et al.  Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules , 2020, npj Computational Materials.

[16]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[17]  Laszlo S. Toth,et al.  Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model , 2002 .

[18]  Aizhen Zhang,et al.  Microstructure and oxidation behavior of new refractory high entropy alloys , 2014 .

[19]  Jien-Wei Yeh,et al.  Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys , 2012 .

[20]  Yanfei Gao,et al.  Fracture resistance of high entropy alloys: A review , 2018, Intermetallics.

[21]  Lina Kjellqvist,et al.  A thermodynamic database for simulation of CMAS and TBC interactions , 2014 .

[22]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[23]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[24]  Stanislava Fintová,et al.  Fatigue Behaviour and Crack Initiation in CoCrFeNiMn High-Entropy Alloy Processed by Powder Metallurgy , 2019, Metals.

[25]  Michael M. Joly,et al.  Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor With Precompression , 2019, Journal of Turbomachinery.

[26]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[27]  Dinesh Fernando,et al.  Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites , 2017, AMB Express.

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Jian Bo Zhu,et al.  Microstructure and Magnetic Properties of FeNiCuMnTiSnx High Entropy Alloys , 2012 .

[30]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[31]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[32]  Fan Zhang,et al.  The PANDAT software package and its applications , 2002 .

[33]  John J. Lewandowski,et al.  Fatigue behavior of high-entropy alloys: A review , 2018 .

[34]  Uwe Glatzel,et al.  Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system , 2014 .

[35]  Robert O. Ritchie,et al.  Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi , 2017 .

[36]  Jian Lu,et al.  Dual-phase nanostructuring as a route to high-strength magnesium alloys , 2017, Nature.

[37]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[38]  John Z. Gyekenyesi,et al.  High Temperature Mechanical Characterization of Ceramic Matrix Composites , 1998 .

[39]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[40]  Y. C. Wang,et al.  Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions , 2010 .

[41]  Jianzuo Ma,et al.  Modeling the temperature dependent ultimate tensile strength for unidirectional ceramic-fiber reinforced ceramic composites considering the load carrying capacity of broken fibers , 2019 .

[42]  Manfred Horstmann,et al.  Fatigue behaviour of a laser beam welded CoCrFeNiMn-type high entropy alloy , 2019, Materials Science and Engineering: A.

[43]  Hannu Oja Multivariate linear regression , 2010 .

[44]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[45]  A. Dasgupta,et al.  Failure-mechanism models for creep and creep rupture , 1993 .

[46]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[47]  Dileep Singh,et al.  Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading , 1989 .

[48]  Paul R. C. Kent,et al.  Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys , 2015 .

[49]  Karin A. Dahmen,et al.  Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior , 2017 .

[50]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[51]  M. Gao,et al.  High-Entropy Alloys: Fundamentals and Applications , 2016 .

[52]  A. Omeltchenko,et al.  Atomistic modeling of the fracture of polycrystalline diamond , 2000 .

[53]  X. Yang,et al.  Alloy Design and Properties Optimization of High-Entropy Alloys , 2012 .

[54]  Hyoung-Seop Kim,et al.  High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading , 2019, Intermetallics.

[55]  Arne Rost,et al.  The SLS-Generated Soft Robotic Hand - An Integrated Approach Using Additive Manufacturing and Reinforcement Learning , 2013, 2013 12th International Conference on Machine Learning and Applications.

[56]  S. Gold,et al.  In-process sensing in selective laser melting (SLM) additive manufacturing , 2016, Integrating Materials and Manufacturing Innovation.

[57]  Rajiv S. Mishra,et al.  Reversed strength-ductility relationship in microstructurally flexible high entropy alloy , 2018, Scripta Materialia.

[58]  T. Shun,et al.  Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating , 2004 .

[59]  Swe-Kai Chen,et al.  Near-constant resistivity in 4.2-360 K in a B2 Al2.08CoCrFeNi , 2012 .

[60]  Gorti B. Sarma,et al.  Texture predictions using a polycrystal plasticity model incorporating neighbor interactions , 1996 .

[61]  P. Liaw,et al.  Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys , 2021, npj Computational Materials.

[62]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[63]  Wei Li,et al.  Microstructures and properties of high-entropy alloy films and coatings: a review , 2018 .

[64]  H. Kim,et al.  Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy , 2017, Nature Communications.

[65]  H. Zhuang,et al.  Machine-learning phase prediction of high-entropy alloys , 2019, Acta Materialia.

[66]  K. An,et al.  First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation , 2019, Acta Materialia.

[67]  J MEAD,et al.  Mechanical properties of lungs. , 1961, Physiological reviews.

[68]  Z. Jagličić,et al.  Discovery of a superconducting high-entropy alloy. , 2014, Physical review letters.

[69]  Y. Hsu,et al.  Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution , 2005 .

[70]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[71]  Surya R. Kalidindi,et al.  Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction , 2002 .

[72]  Sarma B Gorti,et al.  Phase Field Simulations of Autocatalytic Formation of Alpha Lamellar Colonies in Ti-6Al-4V , 2016, Metallurgical and Materials Transactions A.

[73]  P. Liaw,et al.  High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability , 2013, Scientific Reports.

[74]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[75]  M. A. Bertinetti,et al.  Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model , 2009 .

[76]  F. Fang,et al.  Microstructure , 2019, CIRP Encyclopedia of Production Engineering.

[77]  Alaa Elwany,et al.  Assessing Printability Maps in Additive Manufacturing of Metal Alloys , 2019, Acta Materialia.

[78]  Zikang Tang,et al.  Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys , 2016 .

[79]  Ruslan Salakhutdinov,et al.  How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network , 2018 .

[80]  S. Praveen,et al.  High‐Entropy Alloys: Potential Candidates for High‐Temperature Applications – An Overview , 2018 .

[81]  Meng Liu,et al.  Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy , 2008 .

[82]  Karin A. Dahmen,et al.  Fundamental deformation behavior in high-entropy alloys: An overview , 2017 .

[83]  Hiroshi Noguchi,et al.  Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy , 2020 .

[84]  M. Harmer,et al.  Materials informatics for the screening of multi-principal elements and high-entropy alloys , 2019, Nature Communications.

[85]  Jien-Wei Yeh,et al.  High-Entropy Alloys – A New Era of Exploitation , 2007 .

[86]  L. Hector,et al.  Quantitative prediction of solute strengthening in aluminium alloys. , 2010, Nature materials.

[87]  W. Curtin,et al.  Ultimate strengths of fibre-reinforced ceramics and metals , 1993 .

[88]  J. Yeh,et al.  Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys , 2011 .

[89]  Robert F. Singer,et al.  Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation , 2015 .

[90]  J. Banhart,et al.  Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. , 2011, Ultramicroscopy.

[91]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[92]  Johan Franz Gradus,et al.  Patents , 2020 .

[93]  Ting Zhu,et al.  Additively manufactured hierarchical stainless steels with high strength and ductility. , 2018, Nature materials.

[94]  Yan Ping Wang,et al.  Solid Solution or Intermetallics in a High‐Entropy Alloy , 2009 .

[95]  Gang Wang,et al.  Creep, fatigue, and fracture behavior of high-entropy alloys , 2018, Journal of Materials Research.

[96]  John J. Lewandowski,et al.  Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys , 2015, JOM.

[97]  J. Yeh,et al.  The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments , 2010 .

[98]  A. Choudhary,et al.  Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters , 2014, Integrating Materials and Manufacturing Innovation.

[99]  B. D. Conduit,et al.  Design of a nickel-base superalloy using a neural network , 2017, ArXiv.

[100]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[101]  P. Pimienta,et al.  Mechanical Properties , 2018, Bainite in Steels.

[102]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[103]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[104]  Yong Zhang,et al.  Design of Light-Weight High-Entropy Alloys , 2016, Entropy.

[105]  Xiaozhou Liao,et al.  Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting , 2018, Scripta Materialia.

[106]  Khemais Saanouni,et al.  A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming , 2009 .

[107]  Jian Lu,et al.  Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals , 2011 .

[108]  Huseyin Sehitoglu,et al.  A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals , 2011 .

[109]  D. Dimiduk,et al.  Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2012, Journal of Materials Science.

[110]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[111]  J. S. Zuback,et al.  Additive manufacturing of metallic components – Process, structure and properties , 2018 .

[112]  Shu Beng Tor,et al.  Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review , 2018 .

[113]  Badri Narayanan,et al.  Machine learning enabled autonomous microstructural characterization in 3D samples , 2020, npj Computational Materials.

[114]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[115]  Nirupam Chakraborti,et al.  Genetic Algorithms in Optimization of Strength and Ductility of Low-Carbon Steels , 2007 .

[116]  Yun-peng Zhang,et al.  Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy , 2013 .

[117]  D. Fox Creep , 2019, Deformation and Evolution of Life in Crystalline Materials.

[118]  Yong Zhang,et al.  Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy , 2014 .

[119]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[120]  Jien-Wei Yeh,et al.  Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys , 2009 .

[121]  Sangho Kim,et al.  Brittle intermetallic compound makes ultrastrong low-density steel with large ductility , 2015, Nature.

[122]  J. Xu,et al.  Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys , 2014 .

[123]  Julia Ling,et al.  High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates , 2017, Integrating Materials and Manufacturing Innovation.

[124]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[125]  Erin Antono,et al.  Machine Learning for Alloy Composition and Process Optimization , 2018, Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy.

[126]  William A. Curtin,et al.  Cross-slip of long dislocations in FCC solid solutions , 2018, Acta Materialia.

[127]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[128]  M. Frank,et al.  Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy , 2018, Materials Research Letters.

[129]  Wei Chen,et al.  Lattice distortion in a strong and ductile refractory high-entropy alloy , 2018, Acta Materialia.

[130]  Royce Forman,et al.  Behavior of surface and corner cracks subjected to tensile and bending loads in a Ti-6Al-4V alloy , 1992 .

[131]  Ching-Tung Hsu,et al.  The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiB x , 2007 .

[132]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[133]  Carlos G. Levi,et al.  Environmental degradation of thermal-barrier coatings by molten deposits , 2012 .

[134]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[135]  P. Liaw,et al.  Interplay between microstructure and deformation behavior of a laser-welded CoCrFeNi high entropy alloy , 2019, Materials Research Express.

[136]  Alok Choudhary,et al.  A predictive machine learning approach for microstructure optimization and materials design , 2015, Scientific Reports.

[137]  Ying Li,et al.  A novel theoretical model to predict the temperature-dependent fracture strength of ceramic materials , 2017 .

[138]  R. Banerjee,et al.  Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys , 2017, Science and technology of advanced materials.

[139]  Bin Liu,et al.  Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases , 2016 .

[140]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[141]  David G. Stork,et al.  Pattern Classification , 1973 .

[142]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[143]  Ambra Vandone,et al.  Multisensor Data Fusion for Additive Manufacturing Process Control , 2018, IEEE Robotics and Automation Letters.

[144]  Martin Heilmaier,et al.  Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys , 2015 .

[145]  Ralph Spolenak,et al.  Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy , 2014 .

[146]  William A. Curtin,et al.  First-principles prediction of yield stress for basal slip in Mg-Al alloys , 2012 .

[147]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[148]  Yong Zhang,et al.  The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures , 2016 .

[149]  Hui Zhang,et al.  Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening , 2013 .

[150]  Jien-Wei Yeh,et al.  Effect of Aluminum Content on Microstructure and Mechanical Properties of AlxCoCrFeMo0.5Ni High-Entropy Alloys , 2013 .

[151]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[152]  Reinhard Pippan,et al.  Modified NASGRO equation for physically short cracks , 2014 .

[153]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[154]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[155]  Rui Vilar,et al.  Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy , 2011 .

[156]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[157]  Yanfei Gao,et al.  Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae , 2019, Nature Communications.

[158]  P. Liaw,et al.  A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing , 2019, International Journal of Fatigue.

[159]  Rajiv S. Mishra,et al.  Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy , 2018, Scripta Materialia.

[160]  Rajiv S. Mishra,et al.  Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy , 2019, Materials Science and Engineering: A.

[161]  Yao-Jen Chang,et al.  Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning , 2019, JOM.

[162]  Jie Qi,et al.  High Entropy Alloys Mined From Binary Phase Diagrams , 2019, Scientific Reports.

[163]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[164]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[165]  R. Malak,et al.  Efficient exploration of the High Entropy Alloy composition-phase space , 2018 .

[166]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[167]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[168]  P. Hodgson,et al.  Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys , 2017 .

[169]  Turab Lookman,et al.  Machine learning assisted design of high entropy alloys with desired property , 2019, Acta Materialia.

[170]  Fan Zhang,et al.  Phase stability and transformation in a light-weight high-entropy alloy , 2018 .

[171]  Inmaculada Villanúa,et al.  Multivariate Linear Regression Model , 2003 .

[172]  J. J. Kai,et al.  Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys , 2018, Science.

[173]  Ali Jahan,et al.  Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design , 2013 .

[174]  Qiang Huang,et al.  Machine learning in tolerancing for additive manufacturing , 2018 .

[175]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[176]  Jun Sun,et al.  An informatics approach to transformation temperatures of NiTi-based shape memory alloys , 2017 .

[177]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[178]  W. D. Callister,et al.  Fundamentals of Materials Science and Engineering , 2004 .

[179]  Tahany Ibrahim El-Wardany,et al.  Phase Field Simulations of Microstructure Evolution in IN718 using a Surrogate Ni–Fe–Nb Alloy during Laser Powder Bed Fusion , 2018, Metals.

[180]  Eric Feron,et al.  Foundations of Intelligent Additive Manufacturing , 2017, ArXiv.

[181]  J. Korvink,et al.  Phase equilibria. , 1993, Science.

[182]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[183]  Brian L. DeCost,et al.  Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures , 2017, 1702.01117.

[184]  S. Ganesh Multivariate Linear Regression , 2010 .

[185]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[186]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[187]  William A. Curtin,et al.  Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy , 2016 .

[188]  Peizhen Li,et al.  Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys , 2018, Journal of Alloys and Compounds.

[189]  Michael Moorehead,et al.  High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing , 2020, Materials & Design.

[190]  Yang Tong,et al.  Additive Manufacturing of High-Entropy Alloys: A Review , 2018, Entropy.

[191]  Yu. G. Kubarev,et al.  ELECTRICAL , 2021, Data Center Handbook.

[192]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[193]  Shou-Yi Chang,et al.  Structures and Characterizations of TiVCr and TiVCrZrY Films Deposited by Magnetron Sputtering under Different Bias Powers , 2010 .

[194]  Oleg N. Senkov,et al.  Microstructure and properties of a refractory high-entropy alloy after cold working , 2015 .

[195]  S. Pannala,et al.  The metallurgy and processing science of metal additive manufacturing , 2016 .

[196]  Martha H. Jaskowiak,et al.  High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition , 1999 .

[197]  C. D. Lundin,et al.  Fatigue behavior of a wrought Al 0.5 CoCrCuFeNi two-phase high-entropy alloy , 2015 .

[198]  J. Yeh,et al.  Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments , 2008 .

[199]  Zhengyi Fu,et al.  Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys , 2012 .

[200]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[201]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[202]  P. Liaw,et al.  Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review , 2018, Metallurgical and Materials Transactions A.