From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus

Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional–anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance.

[1]  E. Rolls,et al.  A computational theory of hippocampal function, and empirical tests of the theory , 2006, Progress in Neurobiology.

[2]  S H Salter,et al.  The Atlantis platform: a new design and further developments of Buresova's on-demand platform for the water maze. , 1994, Learning & memory.

[3]  L. Swanson,et al.  Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat , 2006, The Journal of comparative neurology.

[4]  Larry R Squire,et al.  Spatial memory, recognition memory, and the hippocampus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Bruno Poucet,et al.  Goal-Related Activity in Hippocampal Place Cells , 2007, The Journal of Neuroscience.

[6]  G. Winocur,et al.  The cognitive neuroscience of remote episodic, semantic and spatial memory , 2006, Current Opinion in Neurobiology.

[7]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[8]  May-Britt Moser,et al.  Place cells, spatial maps and the population code for memory , 2005, Current Opinion in Neurobiology.

[9]  T. Ono,et al.  Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats , 2000, Behavioural Brain Research.

[10]  M. Wilson,et al.  Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task , 2005, PLoS biology.

[11]  G. Paxinos The Rat nervous system , 1985 .

[12]  Tobias Bast,et al.  Toward an Integrative Perspective on Hippocampal Function: From the Rapid Encoding of Experience to Adaptive Behavior , 2007, Reviews in the neurosciences.

[13]  James J Knierim,et al.  Neural representations of location outside the hippocampus. , 2006, Learning & memory.

[14]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[15]  S. Corkin What's new with the amnesic patient H.M.? , 2002, Nature Reviews Neuroscience.

[16]  L. Swanson,et al.  Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems , 2001, Brain Research Reviews.

[17]  G. Buzsáki Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory , 2005, Hippocampus.

[18]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[19]  E I Moser,et al.  Altered inhibition of dentate granule cells during spatial learning in an exploration task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  David J. Sanderson,et al.  NMDA Receptor Subunit NR2A Is Required for Rapidly Acquired Spatial Working Memory But Not Incremental Spatial Reference Memory , 2008, The Journal of Neuroscience.

[21]  L. Swanson,et al.  A direct projection from Ammon's horn to prefrontal cortex in the rat , 1981, Brain Research.

[22]  Menno P. Witter,et al.  Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization , 2006, Behavioural Brain Research.

[23]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[24]  F. Sargolini,et al.  Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task , 2007, Behavioural Brain Research.

[25]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[26]  J. Aggleton,et al.  Qualitatively Different Hippocampal Subfield Engagement Emerges with Mastery of a Spatial Memory Task by Rats , 2008, The Journal of Neuroscience.

[27]  Janina Ferbinteanu,et al.  Both dorsal and ventral hippocampus contribute to spatial learning in Long–Evans rats , 2003, Neuroscience Letters.

[28]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[30]  R. Hampson,et al.  Anatomic model of hippocampal encoding of spatial information , 1999, Hippocampus.

[31]  I. Whishaw,et al.  Evidence for extrahippocampal involvement in place learning and hippocampal involvement in path integration , 1996, Hippocampus.

[32]  H. T. Blair,et al.  Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: A modular approach , 1996, Hippocampus.

[33]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[34]  S. Molden,et al.  Place fields of rat hippocampal pyramidal cells and spatial learning in the watermaze , 2001, The European journal of neuroscience.

[35]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[36]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[37]  Tobias Bast,et al.  Hippocampal modulation of sensorimotor processes , 2003, Progress in Neurobiology.

[38]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[39]  P. Mitra,et al.  Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task , 2007, Proceedings of the National Academy of Sciences.

[40]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[41]  M. W. Brown,et al.  Episodic memory, amnesia, and the hippocampal–anterior thalamic axis , 1999, Behavioral and Brain Sciences.

[42]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[43]  M. Fanselow,et al.  A model of hippocampal–cortical–amygdala interactions based on contextual fear conditioning , 2003 .

[44]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[45]  L. Swanson Cerebral hemisphere regulation of motivated behavior 1 1 Published on the World Wide Web on 2 November 2000. , 2000, Brain Research.

[46]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[47]  R. Mayeux,et al.  Circuit mechanisms underlying memory encoding and retrieval in the long axis of the hippocampal formation , 2001, Nature Neuroscience.

[48]  Gert Holstege,et al.  Emotional Motor System , 2003 .

[49]  R. Morris,et al.  Spatial learning with a minislab in the dorsal hippocampus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Holstege Descending motor pathways and the spinal motor system: limbic and non-limbic components. , 1991, Progress in brain research.

[51]  R. Muller,et al.  A Quarter of a Century of Place Cells , 1996, Neuron.

[52]  L. Swanson,et al.  Structural Evidence for Functional Domains in the Rat Hippocampus , 1996, Science.

[53]  P. Dudchenko The hippocampus as a cognitive map , 2010 .

[54]  M. Wilson,et al.  NMDA receptors, place cells and hippocampal spatial memory , 2004, Nature Reviews Neuroscience.

[55]  P. Frankland,et al.  The organization of recent and remote memories , 2005, Nature Reviews Neuroscience.

[56]  N. Roberts,et al.  Differential involvement of the hippocampus and temporal lobe cortices in rapid and slow learning of new semantic information , 2002, Neuropsychologia.

[57]  J. Seamans,et al.  D1 Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat , 1998, The Journal of Neuroscience.

[58]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[59]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[60]  PA Schwartzkroin,et al.  Interneurons and inhibition in the dentate gyrus of the rat in vivo , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  N. White,et al.  Parallel Information Processing in the Dorsal Striatum: Relation to Hippocampal Function , 1999, The Journal of Neuroscience.

[62]  Suzanne Corkin,et al.  Evidence for semantic learning in profound amnesia: An investigation with patient H.M. , 2004, Hippocampus.

[63]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[64]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[65]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[66]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[67]  Eric A. Zilli,et al.  Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior , 2005, Hippocampus.

[68]  Mark G. Packard,et al.  The dopaminergic mesencephalic projections to the hippocampal formation in the rat , 1997, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[69]  M. Witter,et al.  Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin , 1987, Neuroscience.

[70]  D. Amaral,et al.  The Hippocampal Formation , 2009 .

[71]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[72]  J. Rawlins,et al.  The drugs don’t work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory , 2006, Psychopharmacology.

[73]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[74]  R. O’Reilly,et al.  Conjunctive representations in learning and memory: principles of cortical and hippocampal function. , 2001, Psychological review.

[75]  N. Tamamaki,et al.  Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique , 1988, Brain Research.

[76]  J. Rawlins,et al.  Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. , 2002, Behavioral neuroscience.

[77]  S. Small,et al.  The Longitudinal Axis of the Hippocampal Formation: Its Anatomy, Circuitry, and Role in Cognitive Function , 2002, Reviews in the neurosciences.

[78]  J. D. McGaugh,et al.  The neurobiology of learning and memory: some reminders to remember , 2001, Trends in Neurosciences.

[79]  Matthijs A. A. van der Meer,et al.  Integrating hippocampus and striatum in decision-making , 2007, Current Opinion in Neurobiology.

[80]  Gong-Wu Wang,et al.  Reversible disconnection of the hippocampal-prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats , 2008, Neurobiology of Learning and Memory.

[81]  G Buzsáki,et al.  Interneurons in the Hippocampal Dentate Gyrus: an In Vivo intracellular Study , 1997, The European journal of neuroscience.

[82]  R. J. McDonald,et al.  Neurotoxic lesions of the medial prefrontal cortex or medial striatum impair multiple-location place learning in the water task: evidence for neural structures with complementary roles in behavioural flexibility , 2008, Experimental Brain Research.

[83]  Richard G M Morris,et al.  Longitudinal axis of the hippocampus: Both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol , 2003, Hippocampus.

[84]  T. Jay,et al.  Excitatory Amino Acid Pathway from the Hippocampus to the Prefrontal Cortex. Contribution of AMPA Receptors in Hippocampo‐prefrontal Cortex Transmission , 1992, The European journal of neuroscience.

[85]  R. Morris,et al.  Ibotenate Lesions of Hippocampus and/or Subiculum: Dissociating Components of Allocentric Spatial Learning , 1990, The European journal of neuroscience.

[86]  J. Rawlins,et al.  Regional dissociations within the hippocampus—memory and anxiety , 2004, Neuroscience & Biobehavioral Reviews.

[87]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  A. Phillips,et al.  Neural circuits engaged in ventral hippocampal modulation of dopamine function in medial prefrontal cortex and ventral striatum , 2008, Brain Structure and Function.

[89]  T. Hafting,et al.  Finite Scale of Spatial Representation in the Hippocampus , 2008, Science.

[90]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[91]  R. Bartesaghi,et al.  Interlamellar transfer of impulses in the hippocampal formation , 1983, Experimental Neurology.

[92]  W. Cowan,et al.  An autoradiographic study of the commissural and ipsilateral hippocampo‐dentate projections in the adult rat , 1978, The Journal of comparative neurology.

[93]  P Alvarez,et al.  Memory consolidation and the medial temporal lobe: a simple network model. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[94]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[95]  M. Moser,et al.  Functional differentiation in the hippocampus , 1998, Hippocampus.

[96]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[97]  M L Shapiro,et al.  Ipsilateral associational pathway in the dentate gyrus: An excitatory feedback system that supports N‐methyl‐D‐aspartate—dependent long‐term potentiation , 1994, Hippocampus.

[98]  E. Save,et al.  Unstable CA1 place cell representation in rats with entorhinal cortex lesions , 2008, The European journal of neuroscience.

[99]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[100]  M. Witter CHAPTER 21 – Hippocampal Formation , 2004 .

[101]  S. Molden,et al.  Accumulation of Hippocampal Place Fields at the Goal Location in an Annular Watermaze Task , 2001, The Journal of Neuroscience.

[102]  D. Touretzky,et al.  Cognitive maps beyond the hippocampus , 1997, Hippocampus.

[103]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[104]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[105]  Gong-Wu Wang,et al.  Disconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in rats , 2006, Behavioural Brain Research.

[106]  G. Mogenson,et al.  The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. , 1991, Advances in experimental medicine and biology.

[107]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[108]  James J. Knierim,et al.  Ensemble Dynamics of Hippocampal Regions CA3 and CA1 , 2004, Neuron.

[109]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[110]  T. Ono,et al.  Task-dependent representations in rat hippocampal place neurons. , 1997, Journal of neurophysiology.

[111]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[112]  R. Morris,et al.  Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas , 2006, The European journal of neuroscience.

[113]  E. Save,et al.  Cooperation between the hippocampus and the entorhinal cortex in spatial memory: A disconnection study , 2006, Behavioural Brain Research.

[114]  D. Amaral,et al.  Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus , 1998, The Journal of comparative neurology.

[115]  Edvard I Moser,et al.  Spatial learning with unilateral and bilateral hippocampal networks , 2005, The European journal of neuroscience.

[116]  D. Olton,et al.  Mnemonic correlates of unit activity in the hippocampus , 1986, Brain Research.

[117]  C. Gross,et al.  Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. , 1998, Journal of neurophysiology.

[118]  Kathryn J. Jeffery,et al.  The neurobiology of spatial behaviour , 2003 .

[119]  S. Tonegawa,et al.  CA3 NMDA receptors are required for experience‐dependent shifts in hippocampal activity , 2007, Hippocampus.

[120]  M. Moser,et al.  Reduced fear expression after lesions of the ventral hippocampus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  J. Glowinski,et al.  Hippocampo‐prefrontal cortex pathway: Anatomical and electrophysiological characteristics , 2000, Hippocampus.

[122]  R. Kesner,et al.  Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear‐conditioning , 2004, Hippocampus.

[123]  L. Heimer,et al.  Theories of basal forebrain organization and the "emotional motor system". , 1996, Progress in brain research.

[124]  A. Dickinson Conditioning and associative learning. , 1981, British medical bulletin.

[125]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[126]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[127]  L. Swanson,et al.  Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex , 2007, Brain Research Reviews.

[128]  Richard G M Morris,et al.  Distinct Contributions of Hippocampal NMDA and AMPA Receptors to Encoding and Retrieval of One-Trial Place Memory , 2005, The Journal of Neuroscience.

[129]  Inah Lee,et al.  A Double Dissociation between Hippocampal Subfields Differential Time Course of CA3 and CA1 Place Cells for Processing Changed Environments , 2004, Neuron.

[130]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[131]  F. W. Irwin Purposive Behavior in Animals and Men , 1932, The Psychological Clinic.

[132]  B. Berger,et al.  Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat , 1985, Neuroscience.

[133]  J. Banquet,et al.  Spatial Navigation and Hippocampal Place Cell Firing: The Problem of Goal Encoding , 2004, Reviews in the neurosciences.

[134]  Horacio G Rotstein,et al.  Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. J. McDonald,et al.  Dorsal and ventral hippocampus: Same or different? , 2000, Psychobiology.

[136]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[137]  J. Seamans,et al.  Selective Roles for Hippocampal, Prefrontal Cortical, and Ventral Striatal Circuits in Radial-Arm Maze Tasks With or Without a Delay , 1997, The Journal of Neuroscience.

[138]  R. Morris,et al.  Delay‐dependent impairment of a matching‐to‐place task with chronic and intrahippocampal infusion of the NMDA‐antagonist D‐AP5 , 1999, Hippocampus.

[139]  A. Kelley,et al.  The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde and retrograde-horseradish peroxidase study , 1982, Neuroscience.

[140]  A. Ylinen,et al.  Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review , 2000, Annals of the New York Academy of Sciences.

[141]  R. Hampson,et al.  Hippocampal cell firing correlates of delayed-match-to-sample performance in the rat. , 1993, Behavioral neuroscience.

[142]  Jadin C. Jackson,et al.  Network dynamics of hippocampal cell‐assemblies resemble multiple spatial maps within single tasks , 2007, Hippocampus.