A family of generalized quantum entropies: definition and properties

We present a quantum version of the generalized $$(h,\phi )$$(h,ϕ)-entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum $$(h,\phi )$$(h,ϕ)-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

[1]  Runyao Duan,et al.  Distinguishability of Quantum States by Positive Operator-Valued Measures With Positive Partial Transpose , 2012, IEEE Transactions on Information Theory.

[2]  Koenraad M.R. Audenaert,et al.  Subadditivity of q-entropies for q>1 , 2007, 0705.1276.

[3]  Michael Walter,et al.  Stabilizer information inequalities from phase space distributions , 2013, ArXiv.

[4]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[5]  M. Seevinck,et al.  Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.

[6]  Yuan Li,et al.  Von Neumann entropy and majorization , 2013, 1304.7442.

[7]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[8]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[9]  S. Zozor,et al.  On a generalized entropic uncertainty relation in the case of the qubit , 2013, 1306.0409.

[10]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[11]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[12]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[14]  Mario Berta,et al.  Rényi generalizations of quantum information measures , 2015, ArXiv.

[15]  J. Cardy Some results on the mutual information of disjoint regions in higher dimensions , 2013, 1304.7985.

[16]  E. Lieb Some Convexity and Subadditivity Properties of Entropy , 1975 .

[17]  Alexey E. Rastegin,et al.  Some General Properties of Unified Entropies , 2010, 1012.5356.

[18]  A. Plastino,et al.  Comment on “Quantum discord through the generalized entropy in bipartite quantum states” , 2014, 1504.02046.

[19]  Yichen Huang Entanglement Detection: Complexity and Shannon Entropic Criteria , 2013, IEEE Transactions on Information Theory.

[20]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[21]  Joseph M. Renes,et al.  One-Shot Lossy Quantum Data Compression , 2013, IEEE Transactions on Information Theory.

[22]  P. Tempesta Beyond the Shannon-Khinchin Formulation: The Composability Axiom and the Universal Group Entropy , 2014, 1407.3807.

[23]  S. Zozor,et al.  General entropy-like uncertainty relations in finite dimensions , 2013, 1311.5602.

[24]  R. Rossignoli,et al.  Generalized nonadditive entropies and quantum entanglement. , 2002, Physical review letters.

[25]  Luis Filipe Coelho Antunes,et al.  Conditional Rényi Entropies , 2012, IEEE Transactions on Information Theory.

[26]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[27]  G. A. Raggio Properties of q‐entropies , 1995 .

[28]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[29]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  M. Nielsen Probability distributions consistent with a mixed state , 1999, quant-ph/9909020.

[31]  P. W. Lamberti,et al.  Unified entropic measures of quantum correlations induced by local measurements , 2016, 1604.00329.

[32]  Ryszard Horodecki,et al.  Entanglement processing and statistical inference: The Jaynes principle can produce fake entanglement , 1999 .

[33]  Inder Jeet Taneja,et al.  Unified (r, s)-entropy and its bivariate measures , 1991, Inf. Sci..

[34]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  Masahito Hayashi,et al.  Relating different quantum generalizations of the conditional Rényi entropy , 2013, 1311.3887.

[36]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[37]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[38]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[39]  Attila Gilányi,et al.  An Introduction to the Theory of Functional Equations and Inequalities , 2008 .

[40]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[41]  P. W. Lamberti,et al.  NATURAL METRIC FOR QUANTUM INFORMATION THEORY , 2008, 0807.0583.

[42]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[43]  M. Tribeche,et al.  Quantum entanglement and Kaniadakis entropy , 2015 .

[44]  P. Horodecki,et al.  Quantum redundancies and local realism , 1994 .

[45]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[46]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[47]  Serge Fehr,et al.  On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.

[48]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[49]  C. R. Rao,et al.  On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.

[50]  R. Rossignoli,et al.  Violation of majorization relations in entangled states and its detection by means of generalized entropic forms , 2003, 1505.03611.

[51]  R. Gill,et al.  On asymptotic quantum statistical inference , 2011, 1112.2078.

[52]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[53]  Jun Zhang,et al.  Rényi entropy uncertainty relation for successive projective measurements , 2014, Quantum Information Processing.

[54]  Naresh Sharma Equality conditions for the quantum f-relative entropy and generalized data processing inequalities , 2010, ISIT.

[55]  J. Jurkowski QUANTUM DISCORD DERIVED FROM TSALLIS ENTROPY , 2013 .

[56]  Funabashi,et al.  Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.

[57]  Xinhua Hu,et al.  Generalized quantum entropy , 2006 .

[58]  Joseph M. Renes,et al.  THE PHYSICS OF QUANTUM INFORMATION: COMPLEMENTARITY, UNCERTAINTY, AND ENTANGLEMENT , 2012, 1212.2379.

[59]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[60]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[61]  S. Furuichi Information theoretical properties of Tsallis entropies , 2004, cond-mat/0405600.

[62]  Alexey E. Rastegin Convexity inequalities for estimating generalized conditional entropies from below , 2012, Kybernetika.

[63]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[64]  Mermin,et al.  Simple unified form for the major no-hidden-variables theorems. , 1990, Physical review letters.

[65]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[66]  G. Crooks On Measures of Entropy and Information , 2015 .

[67]  J. Neumann Thermodynamik quantenmechanischer Gesamtheiten , 1927 .

[68]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[69]  Mark M. Wilde,et al.  Quantum Rate-Distortion Coding With Auxiliary Resources , 2012, IEEE Transactions on Information Theory.

[70]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[71]  R. Rossignoli,et al.  Generalized entropies and quantum entanglement , 2003 .

[72]  Antal Járai,et al.  On the measurable solution of a functional equation arising in information theory , 1979 .

[73]  Masahito Hayashi,et al.  On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.

[74]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[75]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[76]  Ya-Jing Fan,et al.  Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information , 2015, Quantum Inf. Process..

[77]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[78]  Alexey E. Rastegin,et al.  Renyi and Tsallis formulations of noise-disturbance trade-off relations , 2014, Quantum Inf. Comput..

[79]  Robert König,et al.  Quantum entropy and its use , 2017 .

[80]  R. Fadanelli,et al.  Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state , 2014, The European Physical Journal D.

[81]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[82]  P. Tempesta Formal groups and Z-entropies , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[83]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[84]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[85]  Marloes H. Maathuis,et al.  From Probability to Statistics and Back: High-Dimensional Models and Processes: A Festschrift in Honor of Jon A. Wellner , 2013 .

[86]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[87]  Leandro Pardo,et al.  Asymptotic distribution of (h, φ)-entropies , 1993 .

[88]  Rudolf Ahlswede,et al.  Quantum data processing , 1999, IEEE Trans. Inf. Theory.

[89]  R. Rossignoli,et al.  Generalized conditional entropy in bipartite quantum systems , 2013, 1308.3000.

[90]  A. Wehrl General properties of entropy , 1978 .

[91]  P. Halmos A Hilbert Space Problem Book , 1967 .

[92]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .