A Multi-Agent PotentiAl Field bAsed APProAch For reAl-tiMe strAtegy gAMe bots

Computer games in general and Real-Time Strategy (RTS) games in particular provide a rich challenge for both human- and computer controlled players, often denoted as bots. The player or bot control ...

[1]  Sven Koenig,et al.  Real-time adaptive A* , 2006, AAMAS '06.

[2]  Markus Gross,et al.  Towards a game agent , 2003 .

[3]  Edwin D. de Jong,et al.  Intransitivity in Coevolution , 2004, PPSN.

[4]  Koren,et al.  Real-Time Obstacle Avoidance for Fast Mobile Robots , 2022 .

[5]  Marcus Gallagher,et al.  An influence map model for playing Ms. Pac-Man , 2008, 2008 IEEE Symposium On Computational Intelligence and Games.

[6]  Jadran Lenarčič,et al.  Advances in Robot Kinematics , 2000 .

[7]  Sven Koenig,et al.  Generalized Adaptive A* , 2008, AAMAS.

[8]  Thomas Röfer,et al.  German Team 2007 : the German National RoboCup Team , 2004 .

[9]  Christian Bauckhage,et al.  Learning Human-Like Movement Behavior for Computer Games , 2004 .

[10]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[11]  John E. Laird,et al.  Intelligent Agents in Computer Games , 1999, AAAI/IAAI.

[12]  Edith Cowan University,et al.  Mobile Sensor Network , 2011 .

[13]  Stefan J. Johansson On using multi-agent systems in playing board games , 2006, AAMAS '06.

[14]  Mauro Massari,et al.  Autonomous Navigation System for Planetary Exploration Rover based on Artificial Potential Fields , 2004 .

[15]  Gaurav S. Sukhatme,et al.  Mobile Sensor Network Deployment using Potential Fields : A Distributed , Scalable Solution to the Area Coverage Problem , 2002 .

[16]  Michael Buro,et al.  RTS Games and Real-Time AI Research , 2003 .

[17]  Vincent De Sapio,et al.  Human-Like Motion from Physiologically-Based Potential Energies , 2004 .

[18]  Ronald C. Arkin,et al.  Motor schema based navigation for a mobile robot: An approach to programming by behavior , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[19]  Franco Zambonelli,et al.  Motion Coordination in the Quake 3 Arena Environment: A Field-Based Approach , 2004, E4MAS.

[20]  Ieee Robotics,et al.  IEEE journal of robotics and automation , 1985 .

[21]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[22]  Alexander Nareyek,et al.  Intelligent Agents for Computer Games , 2006 .

[23]  Christian Bauckhage,et al.  Imitation learning at all levels of game-AI , 2004 .

[24]  Sarit Kraus,et al.  DESIGNING AND BUILDING A NEGOTIATING AUTOMATED AGENT , 1995, Comput. Intell..

[25]  Kay Chen Tan,et al.  Evolutionary artificial potential fields and their application in real time robot path planning , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[26]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[27]  Alexander Nareyek,et al.  AI in Computer Games , 2004, ACM Queue.

[28]  Alessandro Saffiotti,et al.  Using the Electric Field Approach in the RoboCup Domain , 2001, RoboCup.

[29]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[30]  S. L. TOMLINSON,et al.  THE LONG AND SHORT OF STEERING IN COMPUTER GAMES , 2004 .