Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics, and Control

A flapping-wing micro-air-vehicle (FWMAV) represents a complex multi-disciplinary system whose analysis invokes the frontiers of the aerospace engineering disciplines. From the aerodynamic point of view, a nonlinear, unsteady flow is created by the flapping motion. In addition, non-conventional contributors, such as the leading edge vortex, to the aerodynamic loads become dominant in flight. On the other hand, the flight dynamics of a FWMAV constitutes a nonlinear, non-autonomous dynamical system. Furthermore, the stringent weight and size constraints that are always imposed on FWMAVs invoke design with minimal actuation. In addition to the numerous motivating applications, all these features of FWMAVs make it an interesting research point for engineers. In this Dissertation, some challenging points related to FWMAVs are considered. First, an analytical unsteady aerodynamic model that accounts for the leading edge vortex contribution by a feasible computational burden is developed to enable sensitivity and optimization analyses, flight dynamics analysis, and control synthesis. Second, wing kinematics optimization is considered for both aerodynamic performance and maneuverability. For each case, an infinite-dimensional optimization problem is formulated using the calculus of variations to relax any unnecessary constraints induced by approximating the problem as a finitedimensional one. As such, theoretical upper bounds for the aerodynamic performance and maneuverability are obtained. Third, a design methodology for the actuation mechanism is developed. The proposed actuation mechanism is able to provide the required kinematics for both of hovering and forward flight using only one actuator. This is achieved by exploiting the nonlinearities of the wing dynamics to induce the saturation phenomenon to transfer energy from one mode to another. Fourth, the nonlinear, time-periodic flight dynamics of FWMAVs is analyzed using direct and higher-order averaging. The region of applicability of direct averaging is determined and the effects of the aerodynamic-induced parametric excitation are assessed. Finally, tools combining geometric control theory and averaging are used to derive analytic expressions for the Symmetric Products, which are vector fields that directly affect the acceleration of the averaged dynamics. A design optimization problem is then formulated to bring the maneuverability index/criterion early in the design process to maximize the FWMAV maneuverability near hover.

[1]  T. Hedrick,et al.  Wingbeat Time and the Scaling of Passive Rotational Damping in Flapping Flight , 2009, Science.

[2]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[3]  R. A. East,et al.  An unsteady lifting line theory of flapping wings with application to the forward flight of birds , 1981, Journal of Fluid Mechanics.

[4]  Sergey V Shkarayev,et al.  Applications of actuator disk theory to membrane flapping wings , 2010 .

[5]  I. E. Garrick On some reciprocal relations in the theory of nonstationary flows , 1938 .

[6]  Xinyan Deng,et al.  Translational and Rotational Damping of Flapping Flight and Its Dynamics and Stability at Hovering , 2011, IEEE Transactions on Robotics.

[7]  Haithem E. Taha,et al.  Unsteady Nonlinear Aerodynamics of Hovering MAVs/Insects , 2013 .

[8]  Johnny Evers,et al.  Equations of Motion for Flapping Flight , 2002 .

[9]  Muhammad R. Hajj,et al.  Flight dynamics and control of flapping-wing MAVs: a review , 2012 .

[10]  Hermann Schlichting,et al.  Aerodynamics of the airplane , 1979 .

[11]  A. Nayfeh,et al.  NONLINEAR COUPLING OF PITCH AND ROLL MODES IN SHIP MOTIONS , 1973 .

[12]  Kevin Knowles,et al.  Aerodynamic modelling of insect-like flapping flight for micro air vehicles , 2006 .

[13]  Mao Sun,et al.  Hovering of model insects: simulation by coupling equations of motion with Navier–Stokes equations , 2009, Journal of Experimental Biology.

[14]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: II. QUASI-STEADY LIFT AND POWER REQUIREMENTS , 1990 .

[15]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[16]  Michael W. Oppenheimer,et al.  Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover (Postprint) , 2010 .

[17]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[18]  C. Ellington Unsteady aerodynamics of insect flight. , 1995, Symposia of the Society for Experimental Biology.

[19]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[20]  Z. Jane Wang,et al.  DISSECTING INSECT FLIGHT , 2005 .

[21]  Michael W. Oppenheimer,et al.  Dynamics and Control of a Minimally Actuated Biomimetic Vehicle: Part II - Control , 2009 .

[22]  J. Usherwood,et al.  The aerodynamics of revolving wings I. Model hawkmoth wings. , 2002, The Journal of experimental biology.

[23]  Ali H. Nayfeh,et al.  Energy Transfer from High-Frequency to Low-Frequency Modes in Structures , 1995 .

[24]  Kyoyul Oh,et al.  High- to low-frequency modal interactions in a cantilever composite plate , 1995 .

[25]  Anouck Girard,et al.  Averaging of the Nonlinear Dynamics of Flapping Wing Micro Air Vehicles for Symmetrical Flapping , 2011 .

[26]  Bret Stanford,et al.  Analytical Sensitivity Analysis of an Unsteady Vortex Lattice Method for Flapping Wing Optimization , 2009 .

[27]  T. Weis-Fogh,et al.  Biology and physics of locust flight. I. Basic principles in insect flight. A critical review , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[28]  E. Reissner,et al.  Effect of Finite Span on the Airload Distributions for Oscillating Wings I : Aerodynamic Theory of Oscillating Wings of Finite Span , 1947 .

[29]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering Of Locusts in Flight: I. Behavioural Analysis , 1981 .

[30]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[31]  Haithem E. Taha,et al.  Calculus of Variations Approach for Optimum Maneuverability of Flapping Micro-Air-Vehicles Near Hover , 2014 .

[32]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[33]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part I-system modeling , 2006, IEEE Transactions on Robotics.

[34]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. , 1997, The Journal of experimental biology.

[35]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[36]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[37]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part II-flight control design , 2006, IEEE Transactions on Robotics.

[38]  J. Leishman State-space model for unsteady airfoil behavior and dynamic stall , 1989 .

[39]  P. Vela Averaging and control of nonlinear systems , 2003 .

[40]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[41]  Soon-Jo Chung,et al.  CPG-based Control of a Turtle-like Underwater Vehicle , 2008, Robotics: Science and Systems.

[42]  Dean T. Mook,et al.  Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure , 1984 .

[43]  Lyle N. Long,et al.  Object-oriented unsteady vortex lattice method for flapping flight , 2004 .

[44]  R. T. Jones The unsteady lift of a wing of finite aspect ratio , 1940 .

[45]  Michael W. Oppenheimer,et al.  Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions , 2011 .

[46]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[47]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation , 2006 .

[48]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[49]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[50]  Max F. Platzer,et al.  Analysis of Low-Speed Unsteady Airfoil Flows , 2005 .

[51]  Z. J. Wang,et al.  Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. , 2004, Physical review letters.

[52]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[53]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[54]  C. Ellington The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms , 1984 .

[55]  W. Buddenbrock Der Flug der Insekten , .

[56]  T. Teichmann,et al.  Dynamics of Flight: Stability and Control , 1959 .

[57]  Mehdi Ghommem,et al.  Modeling and Analysis for Optimization of Unsteady Aeroelastic Systems , 2011 .

[58]  van der Wall,et al.  The Influence of Variable Flow Velocity on Unsteady Airfoil Behavior , 1992 .

[59]  C. Ellington The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis , 1984 .

[60]  Ali H. Nayfeh,et al.  Nonlinear Interactions: Analytical, Computational, and Experimental Methods , 2000 .

[61]  M. Dickinson,et al.  The effect of advance ratio on the aerodynamics of revolving wings , 2004, Journal of Experimental Biology.

[62]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[63]  Michael W. Oppenheimer,et al.  Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions: Part II - Controller , 2010 .

[64]  Robert C. Nelson,et al.  Flight Stability and Automatic Control , 1989 .

[65]  Ali H. Nayfeh,et al.  NONLINEAR INTERACTIONS BETWEEN TWO WIDELY SPACED MODES-EXTERNAL EXCITATION , 1993 .

[66]  Carlos E. S. Cesnik,et al.  Modeling of High Aspect Ratio Active Flexible Wings for Roll Control , 2002 .

[67]  Andrey Sarychev,et al.  Stability criteria for time-periodic systems via high-order averaging techniques , 2001 .

[68]  Soon-Jo Chung,et al.  Neurobiologically Inspired Control of Engineered Flapping Flight , 2010 .

[69]  Anouck Girard,et al.  Open loop pitch control of a flapping wing micro-air vehicle using a tail and control mass , 2010, Proceedings of the 2010 American Control Conference.

[70]  S.K. Agrawal,et al.  Control of Longitudinal Flight Dynamics of a Flapping-Wing Micro Air Vehicle Using Time-Averaged Model and Differential Flatness Based Controller , 2007, 2007 American Control Conference.

[71]  G. Taylor,et al.  Animal flight dynamics I. Stability in gliding flight. , 2001, Journal of theoretical biology.

[72]  E. Polhamus A concept of the vortex lift of sharp-edge delta wings based on a leading-edge-suction analogy , 1966 .

[73]  Wei Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers: Index , 2007 .

[74]  D. Peters,et al.  Finite state induced flow models. I - Two-dimensional thin airfoil , 1995 .

[75]  Carlos E. S. Cesnik,et al.  Active Warping Control of a Joined Wing/Tail Airplane Configuration , 2003 .

[76]  David A. Peters,et al.  State-space inflow models for rotor aeroelasticity , 1994 .

[77]  D A PARRY,et al.  The swimming of whales and a discussion of Gray's paradox. , 1949, The Journal of experimental biology.

[78]  Ali H. Nayfeh,et al.  Modal Interactions in Dynamical and Structural Systems , 1989 .

[79]  C. Ellington The Aerodynamics of Hovering Insect Flight. III. Kinematics , 1984 .

[80]  A. H. Nayfeh,et al.  Nonlinear motions of beam-mass structure , 1990 .

[81]  Ali H. Nayfeh,et al.  An Experimental Investigation of Energy Transfer from a High- Frequency Mode to a Low-Frequency Mode in a Flexible Structure , 1995 .

[82]  Adrian L. R. Thomas,et al.  Animal flight dynamics II. Longitudinal stability in flapping flight. , 2002, Journal of theoretical biology.

[83]  Carlos E. S. Cesnik,et al.  Flight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover , 2011 .

[84]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[85]  Imraan A. Faruque,et al.  Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover. , 2010, Journal of theoretical biology.

[86]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[87]  Mao Sun,et al.  Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion , 2003, Journal of Experimental Biology.

[88]  Haithem E. Taha,et al.  Wing Kinematics Optimization for Hovering Micro Air Vehicles Using Calculus of Variation , 2013 .

[89]  M. Bolender Rigid Multi-Body Equations-of-Motion for Flapping Wing MAVs Using Kane's Equations , 2009 .

[90]  Erich v. Holst,et al.  Biologische und aerodynamische Probleme des Tierfluges , 2005, Naturwissenschaften.

[91]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[92]  A. R. Ennos The kinematics and aerodynamics of the free flight of some diptera , 1989 .

[93]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[94]  A. H. Nayfeh,et al.  Nonlinear Resonances in a Flexible Cantilever Beam , 1994 .

[95]  Haithem E. Taha,et al.  Longitudinal Flight Dynamics of Hovering MAVs/Insects , 2014 .

[96]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelastic Simulations of a Flapping Wing Micro Air Vehicle Using Two Unsteady Aerodynamic Formulations , 2010 .

[97]  Scott L. Hooper Central Pattern Generators , 2001 .

[98]  Z. Jane Wang,et al.  Analysis of transitions between fluttering, tumbling and steady descent of falling cards , 2005, Journal of Fluid Mechanics.

[99]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[100]  Ali H. Nayfeh,et al.  Nonlinear interactions in a parametrically excited system with widely spaced frequencies , 1995 .

[101]  Muhammad R. Hajj,et al.  Saturation-based actuation for flapping MAVs in hovering and forward flight , 2013 .

[102]  J. Rayner A New Approach to Animal Flight Mechanics , 1979 .

[103]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[104]  R. Zbikowski,et al.  Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria , 2005, Journal of The Royal Society Interface.

[105]  Eric Reissner,et al.  Effect of Finite Span on the Airload Distributions for Oscillating Wings. II - Methods of Calculation and Examples of Application , 1947 .

[106]  S. Shankar Sastry,et al.  Controllability issues in flapping flight for biomimetic micro aerial vehicles (MAVs) , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[107]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[108]  Robert T Jones,et al.  The Unsteady Lift of a Finite Wing , 1939 .

[109]  Muhammad R. Hajj,et al.  State-space representation of the unsteady aerodynamics of flapping flight , 2014 .

[110]  Sergio Preidikman,et al.  Novel Strategy for Suppressing the Flutter Oscillations of Aircraft Wings , 2001 .

[111]  Bret Stanford,et al.  Stability and power optimality in time-periodic flapping wing structures , 2012 .

[112]  C. Ellington,et al.  The vortex wake of a ‘hovering’ model hawkmoth , 1997 .

[113]  Naomi Kato,et al.  Comprar Bio-mechanisms of Swimming and Flying · Fluid Dynamics, Biomimetic Robots, and Sports Science | Kato, Naomi | 9784431733799 | Springer , 2008 .

[114]  Vimal Singh,et al.  Perturbation methods , 1991 .

[115]  Craig A. Woolsey,et al.  LQR Controller for Stabilization of Flapping Wing MAVs in Gust Environments , 2012 .

[116]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[117]  Mehdi Ghommem,et al.  Global optimization of actively morphing flapping wings , 2012 .

[118]  Graham K. Taylor,et al.  Insect flight dynamics and control , 2006 .

[119]  Kurt Lust,et al.  Improved numerical Floquet Multipliers , 2001, Int. J. Bifurc. Chaos.

[120]  Ali H. Nayfeh,et al.  A Theoretical and Experimental Implementation of a Control Method Based on Saturation , 1997 .

[121]  Gordon J. Berman,et al.  Energy-minimizing kinematics in hovering insect flight , 2007, Journal of Fluid Mechanics.

[122]  Michael W. Oppenheimer,et al.  Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions: Part 1 - Aerodynamic Model (Postprint) , 2010 .

[123]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[124]  Adrian L. R. Thomas,et al.  Dynamic flight stability in the desert locust Schistocerca gregaria , 2003, Journal of Experimental Biology.

[125]  Joel W. Burdick,et al.  Underwater locomotion from oscillatory shape deformations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[126]  A. H. Nayfeh,et al.  An Experimental Investigation of Multimode Responses in a Cantilever Beam , 1997 .

[127]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[128]  C. Ellington THE AERODYNAMICS OF HOVERING INSECT FLIGHT. V. A VORTEX THEORY , 1984 .

[129]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: Methodology and analysis , 2006 .

[130]  T. Weis-Fogh Energetics of Hovering Flight in Hummingbirds and in Drosophila , 1972 .

[131]  G. Kastberger The ocelli control the flight course in honeybees , 1990 .

[132]  G. T. Walker The Flapping Flight of Birds , 1925, The Journal of the Royal Aeronautical Society.

[133]  Robert T Jones,et al.  Operational treatment of the nonuniform-lift theory in airplane dynamics , 1938 .

[134]  Hao Liu,et al.  A Numerical Analysis of Dynamic Flight Stability of Hawkmoth Hovering , 2009 .

[135]  M. V. Cook Flight Dynamics Principles , 1997 .

[136]  P.A. Vela,et al.  Second order averaging methods for oscillatory control of underactuated mechanical systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[137]  Bret Stanford,et al.  Kinematic Optimization of Insect Flight for Minimum Mechanical Power , 2010 .

[138]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[139]  Mao Sun,et al.  Dynamic flight stability of a hovering bumblebee , 2005, Journal of Experimental Biology.

[140]  Francesco Bullo,et al.  Averaging and Vibrational Control of Mechanical Systems , 2002, SIAM J. Control. Optim..

[141]  S.K. Agrawal,et al.  Force and moment characterization of flapping wings for micro air vehicle application , 2005, Proceedings of the 2005, American Control Conference, 2005..

[142]  M. Osborne Aerodynamics of flapping flight with application to insects. , 1951, The Journal of experimental biology.

[143]  J. D. Delaurier,et al.  An aerodynamic model for flapping-wing flight , 1993, The Aeronautical Journal (1968).

[144]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[145]  Anouck Girard,et al.  Derivation and simulation of the nonlinear dynamics of a flapping wing micro-air vehicle , 2009 .

[146]  Michael W. Oppenheimer,et al.  Dynamics and Control of a Minimally Actuated Biomimetic Vehicle: Part I - Aerodynamic Model , 2009 .

[147]  Peretz P. Friedmann,et al.  Nonlinear Aeroelastic Effects in Flapping Wing Micro Air Vehicles , 2008 .

[148]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[149]  C. Ellington,et al.  The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth , 1997 .

[150]  Mao Sun,et al.  Dynamic flight stability of hovering insects , 2007 .

[151]  Ali H. Nayfeh,et al.  Aerodynamic-Dynamic Interaction and Longitudinal Stability of Hovering MAVs/Insects , 2013 .

[152]  D. Peters Two-dimensional incompressible unsteady airfoil theory—An overview , 2008 .

[153]  J. Rayner A vortex theory of animal flight. Part 2. The forward flight of birds , 1979, Journal of Fluid Mechanics.

[154]  Mark James Johnson,et al.  Finite-State Airloads for Deformable Airfoils on Fixed and Rotating Wings , 1994 .

[155]  Anouck Girard,et al.  Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles , 2011 .

[156]  Sergey V Shkarayev,et al.  Abstract Method s How Insects Fly Based in the paper: "Nonlinear time-periodic models of the longitudinal flight dynamics of the desert locust Schistocerca gregaria", Graham K Taylor and Rafal Zbikowski , 2006 .

[157]  R. Demoll,et al.  Der Flug der Insekten und der Vögel , 1919, Naturwissenschaften.

[158]  J. Leishman,et al.  State-space representation of unsteady airfoil behavior , 1990 .

[159]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[160]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[161]  Ali H. Nayfeh,et al.  Energy Transfer From High-to Low-Frequency Modes in a Flexible Structure via Modulation , 1994 .

[162]  R. Ramamurti,et al.  A three-dimensional computational study of the aerodynamic mechanisms of insect flight. , 2002, The Journal of experimental biology.

[163]  Mao Sun,et al.  Dynamic flight stability of a bumblebee in forward flight , 2008 .

[164]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[165]  Z. J. Wang,et al.  Unsteady aerodynamics of fluttering and tumbling plates , 2005, Journal of Fluid Mechanics.

[166]  Ephrahim Garcia,et al.  Stability in Ornithopter Longitudinal Flight Dynamics , 2008 .

[167]  Mao Sun,et al.  Lift and power requirements of hovering flight in Drosophila virilis. , 2002, The Journal of experimental biology.

[168]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[169]  Michael W. Oppenheimer,et al.  Flapping Wing Micro-Air-Vehicle Control Employing Triangular Wave Strokes and Cycle-Averaging , 2010 .

[170]  R. Hengstenberg Mechanosensory control of compensatory head roll during flight in the blowflyCalliphora erythrocephala Meig. , 1988, Journal of Comparative Physiology A.

[171]  C. Ellington The Aerodynamics of Hovering Insect Flight. VI. Lift and Power Requirements , 1984 .

[172]  J. Rayner A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal , 1979, Journal of Fluid Mechanics.

[173]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[174]  S. Mao,et al.  Lift and power requirements of hovering insect flight , 2003 .

[175]  Adrian L. R. Thomas,et al.  FLOW VISUALIZATION AND UNSTEADY AERODYNAMICS IN THE FLIGHT OF THE HAWKMOTH, MANDUCA SEXTA , 1997 .

[176]  Jon R. Pratt,et al.  A Nonlinear Vibration Absorber for Flexible Structures , 1998 .

[177]  Thomas J. Mueller,et al.  Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications , 2001 .