Design, fabrication and control of soft robots

Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

[1]  H. F. Schulte The characteristics of the McKibben artificial muscle , 1961 .

[2]  J. Wilson,et al.  Dynamics of the Elastica With End Mass and Follower Loading , 1990 .

[3]  H. Tanaka,et al.  Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.

[4]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[5]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[6]  Jerome S. Schultz,et al.  Handbook of Chemical and Biological Sensors , 1996 .

[7]  Oussama Khatib,et al.  Experimental Robotics IV, The 4th International Symposium, Stanford, California, USA, June 30 - July 2, 1995 , 1997, ISER.

[8]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[9]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[10]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[11]  Rodney A. Brooks,et al.  Humanoid robots , 2002, CACM.

[12]  Jonathan E. Clark,et al.  Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing , 2002 .

[13]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[14]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[15]  Michael Goldfarb,et al.  Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots , 2003 .

[16]  Oussama Khatib,et al.  Whole-Body Dynamic Behavior and Control of Human-like Robots , 2004, Int. J. Humanoid Robotics.

[17]  Tamar Flash,et al.  Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. , 2005, Journal of neurophysiology.

[18]  B. Hochner,et al.  Octopuses Use a Human-like Strategy to Control Precise Point-to-Point Arm Movements , 2006, Current Biology.

[19]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[20]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[22]  Chandana Paul,et al.  Morphological computation: A basis for the analysis of morphology and control requirements , 2006, Robotics Auton. Syst..

[23]  Ja Choon Koo,et al.  Artificial annelid robot driven by soft actuators , 2007, Bioinspiration & biomimetics.

[24]  Ian D. Walker,et al.  Dynamic Modelling for Planar Extensible Continuum Robot Manipulators , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[26]  Ioannis M. Rekleitis,et al.  The Avatar Project , 2008, IEEE Robotics & Automation Magazine.

[27]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[28]  Heinrich M. Jaeger,et al.  JSEL: Jamming Skin Enabled Locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Sung-Hoon Ahn,et al.  Review of manufacturing processes for soft biomimetic robots , 2009 .

[30]  Iain A. Anderson,et al.  Microbial-powered artificial muscles for autonomous robots , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Geoffrey M. Spinks,et al.  Conductive Electroactive Polymers: Intelligent Polymer Systems , 2009 .

[32]  Ian D. Walker,et al.  Closed-Form Inverse Kinematics for Continuum Manipulators , 2009, Adv. Robotics.

[33]  John Kenneth Salisbury,et al.  Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive , 2009, IEEE Transactions on Robotics.

[34]  Hiroyuki Nishide,et al.  Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery , 2009 .

[35]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[36]  Nikolaus Correll,et al.  Soft Autonomous Materials - Using Active Elasticity and Embedded Distributed Computation , 2010, ISER.

[37]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[38]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[39]  Xin Chen,et al.  Soft Mobile Robots with On-Board Chemical Pressure Generation , 2011, ISRR.

[40]  Robert J. Wood,et al.  Wearable tactile keypad with stretchable artificial skin , 2011, 2011 IEEE International Conference on Robotics and Automation.

[41]  Jason Rife,et al.  Modeling locomotion of a soft-bodied arthropod using inverse dynamics , 2011, Bioinspiration & biomimetics.

[42]  R. Full Invertebrate Locomotor Systems , 2011 .

[43]  R. Wood,et al.  A non-differential elastomer curvature sensor for softer-than-skin electronics , 2011 .

[44]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[45]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[46]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[47]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[48]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[49]  K. Oyaizu,et al.  p‐ and n‐Type Bipolar Redox‐Active Radical Polymer: Toward Totally Organic Polymer‐Based Rechargeable Devices with Variable Configuration , 2011, Advanced materials.

[50]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[51]  B Mazzolai,et al.  Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions , 2012, Bioinspiration & biomimetics.

[52]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[53]  Megan L. McCain,et al.  A tissue-engineered jellyfish with biomimetic propulsion , 2012, Nature Biotechnology.

[54]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[55]  B Mazzolai,et al.  Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements , 2012, Bioinspiration & biomimetics.

[56]  Howie N. Chu,et al.  Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric , 2012, Advanced materials.

[57]  Helmut Hauser,et al.  Towards a theoretical foundation for morphological computation with compliant bodies , 2011, Biological Cybernetics.

[58]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[59]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[60]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[61]  Hod Lipson,et al.  Fabricated: The New World of 3D Printing , 2013 .

[62]  Carmel Majidi,et al.  Soft-matter composites with electrically tunable elastic rigidity , 2013 .

[63]  Shixuan Yang,et al.  Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges , 2013, Sensors.

[64]  C. Majidi Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[65]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[66]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[67]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[68]  Silvestro Micera,et al.  Soft robot for gait rehabilitation of spinalized rodents , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  Arianna Menciassi,et al.  STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Daniel M. Vogt,et al.  Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels , 2013, IEEE Sensors Journal.

[71]  Tao Deng,et al.  Visual servo control of cable-driven soft robotic manipulator , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[73]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[74]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[75]  Robert J. Wood,et al.  Influence of surface traction on soft robot undulation , 2013, Int. J. Robotics Res..

[76]  Rebecca K. Kramer,et al.  Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors , 2013 .

[77]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[78]  Daniel M. Vogt,et al.  Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers , 2014, Advanced materials.

[79]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[80]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[81]  Robert J. Wood,et al.  Wearable soft sensing suit for human gait measurement , 2014, Int. J. Robotics Res..

[82]  Oliver Brock,et al.  A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping , 2014, Robotics: Science and Systems.

[83]  Ming Luo,et al.  Theoretical Modeling and Experimental Analysis of a Pressure-Operated Soft Robotic Snake , 2014 .

[84]  K. Iagnemma,et al.  Thermally Tunable, Self-Healing Composites for Soft Robotic Applications , 2014 .

[85]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[86]  George M. Whitesides,et al.  A Hybrid Combining Hard and Soft Robots , 2014 .

[87]  LuoMing,et al.  Theoretical Modeling and Experimental Analysis of a Pressure-Operated Soft Robotic Snake , 2014 .

[88]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[89]  Jonathan Rossiter,et al.  Biodegradable and edible gelatine actuators for use as artificial muscles , 2014, Smart Structures.

[90]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[91]  Matteo Cianchetti,et al.  Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..

[92]  John Rieffel,et al.  Growing and Evolving Soft Robots , 2014, Artificial Life.

[93]  Robert J. Wood,et al.  An untethered jumping soft robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[94]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[95]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[96]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[97]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[98]  Siddharth Sanan,et al.  Pneumatic Torsional Actuators for Inflatable Robots , 2014 .

[99]  Daniela Rus,et al.  Hydraulic Autonomous Soft Robotic Fish for 3D Swimming , 2014, ISER.

[100]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[101]  Robert J. Wood,et al.  Simple passive valves for addressable pneumatic actuation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[102]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[103]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[104]  Daniela Rus,et al.  Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..