A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries

[1]  K. Zhao,et al.  Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries , 2016 .

[2]  Xinran Xiao,et al.  Investigation of the chemo-mechanical coupling in lithiation/delithiation of amorphous Si through simulations of Si thin films and Si nanospheres , 2016 .

[3]  Xiaosong Huang,et al.  Study of lithium diffusivity in amorphous silicon via finite element analysis , 2016 .

[4]  Chao Zhang,et al.  Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse , 2015 .

[5]  Srikanth Allu,et al.  Multiscale modeling and characterization for performance and safety of lithium-ion batteries , 2015 .

[6]  Y. Chiang,et al.  Electrochemical Charge Transfer Reaction Kinetics at the Silicon-Liquid Electrolyte Interface , 2015 .

[7]  C. Please,et al.  Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery , 2014, 1405.7924.

[8]  Xiaosong Huang,et al.  A Microstructural Resolved Model for the Stress Analysis of Lithium-Ion Batteries , 2014 .

[9]  M. Anouti,et al.  Viscosity and carbon dioxide solubility for LiPF6, LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect. , 2014, The journal of physical chemistry. B.

[10]  Xiaosong Huang,et al.  A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell , 2014 .

[11]  P. Kumta,et al.  Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery , 2014 .

[12]  Allan F. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[13]  V. Levitas,et al.  Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor , 2013 .

[14]  Zhigang Suo,et al.  Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries , 2013 .

[15]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[16]  V. Battaglia,et al.  Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery , 2013 .

[17]  Xiaosong Huang,et al.  The effect of battery design parameters on heat generation and utilization in a Li-ion cell , 2012 .

[18]  E. Kaxiras,et al.  Reactive flow in silicon electrodes assisted by the insertion of lithium. , 2012, Nano letters.

[19]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[20]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[21]  M. Verbrugge,et al.  Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction , 2012 .

[22]  M. Chi,et al.  Self-Aligned Cu-Si Core-Shell Nanowire Array as a High-Performance Anode for Li-Ion Batteries , 2012 .

[23]  J. Newman,et al.  Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon , 2012, 1201.1428.

[24]  Ann Marie Sastry,et al.  Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation , 2012 .

[25]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[26]  Daniel Lemordant,et al.  Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage , 2011 .

[27]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[28]  Yi Cui,et al.  Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires , 2011 .

[29]  Rajeswari Chandrasekaran,et al.  Analysis of the Lithium-Ion Insertion Silicon Composite Electrode/Separator/Lithium Foil Cell , 2011 .

[30]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[31]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[32]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[33]  A. Bower,et al.  A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell , 2011, 1107.6020.

[34]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[35]  Yi Cui,et al.  Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries , 2010 .

[36]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[37]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[38]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[39]  Xiaosong Huang,et al.  A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery , 2010 .

[40]  Q. Horn,et al.  The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries , 2009 .

[41]  A. Bower Applied Mechanics of Solids , 2009 .

[42]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[43]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[44]  J.F.M. Oudenhoven,et al.  On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries , 2009 .

[45]  Mostafa M. Abdalla,et al.  Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers , 2009 .

[46]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[47]  Wei Shyy,et al.  Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles , 2008 .

[48]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[49]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[50]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[51]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[52]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[53]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[54]  Y. Pleskov,et al.  Lithium insertion into amorphous silicon thin-film electrodes , 2007 .

[55]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[56]  Mo-hua Yang,et al.  Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries , 2005 .

[57]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[58]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[59]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[60]  Min Park,et al.  Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries , 2003 .

[61]  U. Jung,et al.  A study of electrochemical kinetics of lithium ion in organic electrolytes , 2002 .

[62]  Gary L. Henriksen,et al.  LiPF6-EC-EMC electrolyte for Li-ion battery , 2002 .

[63]  Milan Jirásek,et al.  Inelastic Analysis of Structures , 2001 .

[64]  C. Wan,et al.  Conductivity Study of Porous Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride) A Comparison with Polypropylene Separators , 2000 .

[65]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[66]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[67]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[68]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .

[69]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[70]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[71]  Howard E. Boyer,et al.  Atlas of stress-strain curves , 1987 .

[72]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[73]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .