A bi-criteria path planning algorithm for robotics applications

Realistic path planning applications often require optimizing with respect to several criteria simultaneously. Here we introduce an efficient algorithm for bi-criteria path planning on graphs. Our approach is based on augmenting the state space to keep track of the "budget" remaining to satisfy the constraints on secondary cost. The resulting augmented graph is acyclic and the primary cost can be then minimized by a simple upward sweep through budget levels. The efficiency and accuracy of our algorithm is tested on Probabilistic Roadmap graphs to minimize the distance of travel subject to a constraint on the overall threat exposure of the robot. We also present the results from field experiments illustrating the use of this approach on realistic robotic systems.

[1]  A. Vladimirsky,et al.  AN EFFICIENT METHOD FOR MULTIOBJECTIVE OPTIMAL CONTROL AND OPTIMAL CONTROL SUBJECT TO INTEGRAL CONSTRAINTS , 2009, 0901.3977.

[2]  Marco Pavone,et al.  Chance-constrained dynamic programming with application to risk-aware robotic space exploration , 2015, Autonomous Robots.

[3]  Jeffrey M. Jaffe,et al.  Algorithms for finding paths with multiple constraints , 1984, Networks.

[4]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Alberto Speranzon,et al.  Hierarchical Multi-objective planning: From mission specifications to contingency management , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[7]  Xu Chu Ding,et al.  Strategic planning under uncertainties via constrained Markov Decision Processes , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Lawrence Mandow,et al.  Multiobjective A* search with consistent heuristics , 2010, JACM.

[9]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[10]  Sven Koenig,et al.  Fast replanning for navigation in unknown terrain , 2005, IEEE Transactions on Robotics.

[11]  Oskar von Stryk,et al.  Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots , 2013, RoboCup.

[12]  L. Mandow,et al.  An Evaluation of Heuristic Functions for Bicriterion Shortest Path Problems , 2009 .

[13]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[14]  D. Bertsekas,et al.  Parallel asynchronous label-correcting methods for shortest paths , 1996 .

[15]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[16]  Kim Allan Andersen,et al.  A label correcting approach for solving bicriterion shortest-path problems , 2000, Comput. Oper. Res..

[17]  Dimitri P. Bertsekas,et al.  A simple and fast label correcting algorithm for shortest paths , 1993, Networks.

[18]  Lawrence Mandow,et al.  A New Approach to Multiobjective A* Search , 2005, IJCAI.

[19]  C. T. Tung,et al.  A multicriteria Pareto-optimal path algorithm , 1992 .

[20]  Lawrence Mandow,et al.  An Empirical Comparison of Some Multiobjective Graph Search Algorithms , 2010, KI.

[21]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[22]  Seyedshams Feyzabadi,et al.  HCMDP: A hierarchical solution to Constrained Markov Decision Processes , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[24]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[26]  David Portugal,et al.  An evaluation of 2D SLAM techniques available in Robot Operating System , 2013, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[27]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[28]  Kenneth Y. Goldberg,et al.  Anytime Nonparametric A , 2011, AAAI.

[29]  Shlomo Zilberstein,et al.  Anytime Heuristic Search: First Results , 1997 .

[30]  Ryo Takei,et al.  Optimal Control with Budget Constraints and Resets , 2011, SIAM J. Control. Optim..