Hierarchical control of end-point impedance and joint impedance for redundant manipulators

This paper proposes an impedance control method for redundant manipulators, which can control not only the end-point impedance using one of the conventional impedance control methods, but the joint impedance which has no effects on the end-point impedance. First, a sufficient condition for the joint impedance controller is derived. Then, the optimal controller for a given desired joint impedance is designed using the least squares method. Finally, computer simulations and experiments using a planar direct-drive robot are performed in order to confirm the validity of the proposed method.

[1]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[2]  Hirohiko Arai,et al.  Impedance Control of a Direct Drive Manipulator without Using Force Sensors , 1989 .

[3]  Susumu Tachi,et al.  Impedance control of a direct-drive manipulator without using force sensors , 1990, Adv. Robotics.

[4]  Toshio Tsuji,et al.  Identification and Regulation of Mechanical Impedance for Force Control of Robot Manipulators , 1990 .

[5]  M Potkonjak,et al.  Two new methods for computer forming of dynamic equations of active mechanisms , 1979 .

[6]  Zhiwei Luo,et al.  Control design of robot for compliant manipulation on dynamic environments , 1993, IEEE Trans. Robotics Autom..

[7]  Norihiko Adachi,et al.  Compliant motion control of kinematically redundant manipulators , 1993, IEEE Trans. Robotics Autom..

[8]  Toshio Tsuji,et al.  Multi-point impedance control for redundant manipulators , 1990, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Neville Hogan,et al.  An analysis of contact instability in terms of passive physical equivalents , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  Il Hong Suh,et al.  Motion/force decomposition of redundant manipulator and its application to hybrid impedance control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Hee-Jun Kang,et al.  Joint torque optimization of redundant manipulators via the null space damping method , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[12]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[13]  Peter K. Allen,et al.  Design of a partitioned visual feedback controller , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  John Baillieul,et al.  Avoiding obstacles and resolving kinematic redundancy , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[15]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..

[16]  Wyatt S. Newman,et al.  Augmented impedance control: an approach to compliant control of kinematically redundant manipulators , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[17]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[18]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[19]  Scott McMillan,et al.  Efficient dynamic simulation of an underwater vehicle with a robotic manipulator , 1995, IEEE Trans. Syst. Man Cybern..

[20]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[21]  Max Donath,et al.  Generalized impedance control of a redundant manipulator for handling tasks with position uncertainty while avoiding obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[22]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[23]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  J. Salisbury,et al.  Active stiffness control of a manipulator in cartesian coordinates , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  Michael Athans,et al.  The Matrix Minimum Principle , 1967, Inf. Control..

[26]  Makoto Kaneko,et al.  Multi-Point Compliance Control for Redundant Manipulators , 1990 .

[27]  Toshio Tsuji,et al.  Multi-point Compliance Control Of Dual-arm Robots , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Mark W. Spong,et al.  Hybrid impedance control of robotic manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[29]  Max Q.-H. Meng,et al.  Impedance control with adaptation for robotic manipulations , 1991, IEEE Trans. Robotics Autom..

[30]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[31]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .